检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艺卉 闫文君 徐从安 查浩然 桂冠[5] 陈雪梅 葛亮[6] WANG Yihui;YAN Wenjun;XU Congan;ZHA Haoran;GUI Guan;CHEN Xuemei;GE Liang(Institute of Information Fusion,Naval Aviation University,Yantai Shandong 264001,China;Unit 31401 of the People's Liberation Army,Yantai Shandong 264001,China;Advanced Technology Research Institute,Beijing Institute of Technology,Beijing 100000,China;School of Information and Communication Engineering,Harbin Engineering University,Harbin Heilongjiang 150000,China;School of Information and Communication Engineering,Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210000,China;Tianjin Institute of Surveying and Mapping Company Limited,Tianjin 300000,China)
机构地区:[1]海军航空大学信息融合研究所,山东烟台264001 [2]中国人民解放军31401部队,山东烟台264001 [3]北京理工大学前沿技术研究院,北京100000 [4]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150000 [5]南京邮电大学信息与通信工程学院,江苏南京210000 [6]天津市测绘院有限公司,天津300000
出 处:《太赫兹科学与电子信息学报》2023年第9期1100-1108,共9页Journal of Terahertz Science and Electronic Information Technology
基 金:国家自然科学基金资助项目(62271499);电磁空间安全全国重点实验室开放基金资助项目。
摘 要:针对辐射源个体识别高精确度、轻量化、实时性的现实应用需求,提出了面向广播式自动相关监测(ADS-B)信号辐射源个体识别的轻量化模型设计方法。根据信号数据特点进行解码处理,并对不均衡样本进行权重调节,改善样本质量;通过分组卷积获取不同维度的细微特征,与初始特征拼接,实现多维互补特征融合,并联同步进行提高识别效率。利用Ghost bottleneck结构实现网络模型压缩与跨层连接,在融合多维特征的同时节省计算资源。实验结果表明,本文算法结构精简,计算量低,识别率达到95.2%,并在不同容量的样本识别中效果稳定。本文算法较好地平衡了辐射源个体识别精确度、轻量化与高时效的需求。Aiming at the practical application requirements of high precision,lightweight and instant for Specific Emitter Identification(SEI),a lightweight model design for radiation source individual recognition of Automatic Dependent Surveillance-Broadcast(ADS-B)signal is proposed in this paper.Firstly,the signal data is decoded according to the characteristics of the signal data,and the weight of the unbalanced sample is adjusted to improve the sample quality.Then,the small features of different dimensions are obtained by grouping convolution and splicing with the initial features to realize multidimensional complementary feature fusion and parallel synchronization to improve the recognition efficiency.Network model compression and cross-layer connection are implemented by using a Ghost bottleneck structure,which tends to save computing resources while integrating multi-dimensional characteristics.The experimental results show that the proposed algorithm has the advantages of simple structure and low computational load,high recognition rate of 95.2%,and a stable recognition effect in different capacity samples.The proposed design better balances the needs of individual identification accuracy,lightweight and efficiency for SEI.
关 键 词:辐射源个体识别 Conv2D层 Ghost bottleneck结构 轻量化设计
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.16