检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:燕帅 殷长春[1] 苏扬 柯智渊 王路远 YAN Shuai;YIN ChangChun;SU Yang;KE ZhiYuan;WANG LuYuan(College of Geo-Exploration Science and Technology,Jilin University,Changchun 130026,China)
机构地区:[1]吉林大学地球探测科学与技术学院,长春130026
出 处:《地球物理学报》2023年第10期4290-4300,共11页Chinese Journal of Geophysics
基 金:国家重点研发计划项目课题(2021YFB3202104);国家自然科学基金项目(42030806)联合资助。
摘 要:瞬变电磁一维反演技术已经相对成熟,但对野外实测数据进行实时成像仍然有一定难度.本文将卷积神经网络引入到时间域瞬变电磁数据成像中,通过训练网络近似瞬变电磁响应与地电模型之间的函数关系,将复杂的反演过程转化为矩阵映射过程,进而实现瞬变电磁数据的实时快速成像.考虑到传统算法大多针对单点进行成像,难以实现面积性数据快速处理,本文尝试将接收点相对发射源的坐标信息作为网络输入参数,这不仅使得该算法在野外成像过程中更加灵活,同时也大大减少了训练过程中样本集数量.为验证算法的有效性,我们首先在大量理论数据上进行测试,检验了卷积网络的优越性以及加入坐标信息可在不影响成像精度的前提下极大提升该方法对不规则测点电磁数据的成像灵活性.最后,我们通过对实测数据分别进行神经网络成像和Occam反演,进一步验证本文神经网络成像方法的有效性.The one-dimensional(1D)inversion of Transient Electromagnetic(TEM)data has been well developed,however,it is still difficult to conduct real-time imaging of field survey data.In this paper,we introduce a Convolutional Neural Network(CNN)into TEM data imaging.By training the network to approximate the relationship between the time-domain EM responses and geoelectrical model parameters,the complex inversion process is transformed into a matrix mapping process,realizing the real-time and fast imaging of TEM data.Considering that the traditional imaging algorithms are mostly executed on a point-by-point basis,it is difficult to achieve rapid processing of large survey dataset,we try in this paper to take the coordinate information of the receivers relative to the transmitting source as the network input parameter,which not only makes the algorithm more flexible in the imaging of survey data,but also greatly reduces the number of samplings in the training process.To verify the effectiveness,we first test our algorithm on synthetic data and demonstrate that by adding coordinate information into the network our CNN method has the flexibility of imaging irregular survey points without affecting the imaging accuracy.Finally,we compare our imaging results with the Occam's inversion for a survey dataset to further verify the effectiveness of our imaging method.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.32.116