检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王媛媛 WANG Yuanyuan(Xianyang Vocational and Technical College,Xianyang Shanxi 712000,China)
出 处:《自动化与仪器仪表》2023年第9期233-236,共4页Automation & Instrumentation
基 金:咸阳职业技术学院教改课题《产学研创一体化“互联网+”双创人才培养模式实践研究——以学前教育专业为例》(2022JYB04)。
摘 要:为提高学前教育机器人导航精度,提出一种基于多传感信息融合的导航定位方法。首先,提出多传感信息融合定位的整体思路,然后选择扩展卡尔曼滤波改进A*算法对机器人进行定位和路径优化,并重点搭建了融合定位的系统模型与观测模型。结果表明:在搭建机器人硬件和软件的基础上,在融合姿态和融合轨迹方面,本研究采用的EFK多传感信息融合都表现出良好的性能,具有一定的可行性与有效性;以其为基础的机器人导航定位系统能够可在教室和操场上安全平稳的移动,并快速精准地到达指定目标点。To improve the navigation accuracy of preschool education robots,a navigation and positioning method based on multi-sensor information fusion is proposed.Firstly,the overall idea of multi-sensor information fusion localization is proposed,and then the extended Kalman filter is selected to improve the A*algorithm for robot localization and path optimization,with a focus on building a system model and observation model for fusion localization.The results show that,on the basis of building the hardware and software of the robot,the EFK multi-sensor information fusion used in this study has shown good performance in terms of fusion posture and fusion trajectory,and has certain feasibility and effectiveness;The robot navigation and positioning system based on it can safely and smoothly move in classrooms and playgrounds,and quickly and accurately reach designated target points.
关 键 词:多传感信息融合 扩展卡尔曼滤波算法 导航系统 教育机器人
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7