基于主成分分析和学习向量量化神经网络的制动工况路面识别与验证  被引量:1

Road Surface Recognition Under Braking Conditions Based on Principal Component Analysis and Learning Vector Quantization Neural Network

在线阅读下载全文

作  者:郑国峰 陈文 傅涛 ZHENG Guofeng;CHEN Wen;FU Tao(School of Mechatronics and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China;Kesens Automotive Technology(Shanghai)Co.,Ltd.,Shanghai 201802,China)

机构地区:[1]重庆交通大学机电与车辆工程学院,重庆400074 [2]凯晟汽车技术(上海)有限公司,上海201802

出  处:《汽车工程学报》2023年第5期635-644,共10页Chinese Journal of Automotive Engineering

基  金:国家自然科学基金项目(52305147);重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1266);中国博士后科学基金面上项目(2022M713438);重庆市教委科学技术研究计划项目(KJQN2021000713)。

摘  要:开展车辆制动时路面类型识别的研究,提出一种基于主成分分析-学习向量量化神经网络(Principal Component Analysis—Learning Vector Quantization,PCA-LVQ)的制动工况路面识别方法。利用主成分分析对多维度驾驶数据降维处理,提取能表征路面特征的主要成分,采用学习向量量化神经网络对降维处理后的驾驶数据进行训练,并用于路面特征分类,使用制动工况下实车试验数据和硬件在环仿真数据进行验证。结果表明,所提出的PCA-LVQ算法能准确识别路面类型特征,路面识别的精度达到97%,与传统BP神经网络的路面类型特征识别精度提升7%;同时,在不同车速下,基于PCA-LVQ算法也能较准确地识别路面类型特征。Conducting research on identifying road surface types during vehicle braking,this paper proposes a method for road surface recognition under braking conditions based on the Principal Component AnalysisLearning Vector Quantization(PCA-LVQ) neural network.Principal component analysis was used to reduce the dimensionality of multi-dimensional driving data and extract the primary components that represent the characteristics of road surface.After dimensionality reduction of the driving data,a learning vector quantization neural network was used for road surface feature classification.The approach was validated under braking conditions using real vehicle test data and hardware-in-the-loop simulation data.The results show that the proposed PCA-LVQ algorithm can accurately identify the characteristics of the road surface with the recognition accuracy of 97%,which is 7% higher than that of the traditional BP neural network.Additionally,at different speeds,the PCA-LVQ-based algorithm can also identify the characteristics of the road surface type with greater accuracy.The proposed model provides a more convenient recognition approach and has great potential for application extension.

关 键 词:主成分分析 学习向量量化神经网络 制动工况 路面类型特征识别 

分 类 号:U463.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象