基于遗传算法的径向啮合章动磁齿轮转矩模型优化研究  被引量:2

Optimization of Torque Models for Radial Meshing Nutation Magnetic Gears Based on the Genetic Algorithm

在线阅读下载全文

作  者:楼梅燕 姚立纲[2] 郭宸显 Lou Meiyan;Yao Ligang;Guo Chenxian(Department of Mechanical and Electrical Engineering,Fuzhou Polytechnic,Fuzhou 350108,China;School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350108,China;Jinan Power Supply Company of State Grid Shandong Electric Power Company,Jinan 250001,China)

机构地区:[1]福州职业技术学院机电工程系,福建福州350108 [2]福州大学机械工程及自动化学院,福建福州350108 [3]国网山东省电力公司济南供电公司,山东济南250001

出  处:《机械传动》2023年第10期17-22,共6页Journal of Mechanical Transmission

基  金:福建省自然科学基金项目(2022J01520);福建省教育厅中青年教师教育科研项目(JAT210815)。

摘  要:在对章动磁力传动的研究中,输出转矩是评价其性能的重要指标,对其磁转矩的分析和优化尤为重要。提出了一种径向啮合章动磁齿轮传动机构,分析了其运行原理;基于恒定磁场磁矢位理论,建立了径向啮合章动磁齿轮的磁感应强度模型,推导出径向啮合磁齿轮转矩的数学模型;运用遗传算法优化了章动磁齿轮结构参数,并对优化结果进行了有效性验证。结果表明,在限定磁齿轮尺寸和磁极材料用量的条件下,优化后的输出转矩可以得到提高。In the research of nutation magnetic drive,the torque density of gears is an important index to evaluate its performance.Thus,the analysis and optimization of the magnetic torque is particularly important.A radial meshing nutation magnetic gear is presented and its operating principle is analyzed.Based on the magnet⁃ic vector potential theory of the constant magnetic field,the magnetic induction intensity model of the radial meshing nutation magnetic gears is established,and the mathematical model of the torque of the radial meshing magnetic gear is deduced.The genetic algorithm is used to optimize the structural parameters of the nutation magnetic gear,and the effectiveness of the optimization results is verified.The results show that the torque densi⁃ty after the optimization can be improved under the condition by limiting the size of magnetic gears and the amount of the magnetic pole material.

关 键 词:章动 遗传算法 磁齿轮 转矩 优化 

分 类 号:TH132.41[机械工程—机械制造及自动化] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象