检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韦来凤 洪超群 陈柳伊 许镒洧[3] 伍方财[4] WEI Laifeng;HONG Chaoqun;CHEN Liuyi;XU Yiwei;WU Fangcai(Department of Clinical Laboratory,Jiangmen Central Hospital,Affiliated Jiangmen Hospital of Sun Yat-sen University,Jiangmen 529000;Department of Oncological Research Laboratory,The Cancer Hospital of Shantou University Medical College,Shantou 515041;Department of Clinical Laboratory,The Cancer Hospital of Shantou University Medical College,Shantou 515041;Department of Radiation Oncology,The Cancer Hospital of Shantou University Medical College,Shantou 515041,Guangdong,China)
机构地区:[1]江门市中心医院/中山大学附属江门医院检验科,广东江门529000 [2]汕头大学医学院附属肿瘤医院肿瘤研究实验室,广东汕头515041 [3]汕头大学医学院附属肿瘤医院检验科,广东汕头515041 [4]汕头大学医学院附属肿瘤医院放疗科,广东汕头515041
出 处:《癌变.畸变.突变》2023年第5期366-373,共8页Carcinogenesis,Teratogenesis & Mutagenesis
基 金:广东省科技创新战略专项基金(STKJ202209069)。
摘 要:目的:舌鳞状细胞癌(TSCC)转移率和术后复发率均较高,本研究拟探讨实验室免疫相关指标的列线图模型对预测TSCC手术患者预后的价值。方法:对2008—2019年间在汕头大学医学院附属肿瘤医院接受治疗的167例TSCC患者进行回顾性分析。采用Cox回归分析确定与患者总生存期(OS)相关的独立预后因素,以建立列线图并预测患者OS。通过校准曲线、决策曲线和C-指数对模型的预测准确性进行评估。结果:多因素Cox回归分析和K-M生存分析显示,B因子、单核细胞计数、淋巴细胞-单核细胞比值和肿瘤淋巴结转移(TNM)分期是独立预后影响因素,将这些因素用来构建列线图预后模型。列线图的C-指数为0.754[95%CI(0.672,0.835)],高于TNM分期的0.679[95%CI(0.602,0.755)],并且列线图的赤池信息准则和贝叶斯信息准则分别为312.134和318.239,均低于单独TNM分期的319.163和320.689,表明列线图对OS的预测具有更好的拟合优度。校准曲线分析显示,列线图对OS的预测值与患者实际的观测值具有较好的一致性。此外,时间依赖性C-指数分析和决策曲线结果显示,与TNM分期相比,该预后模型具有良好的预测准确性和鉴别能力。结论:基于临床病理指标和术前炎症相关指标的列线图模型可能有助于预测TSCC手术患者的预后。OBJECTIVE:Tongue squamous cell carcinoma(TSCC)had a high rate of metastasis and postoperative recurrence.Our study objective was to use a nomogram model to provide prognosis of TSCC patients undergoing surgery.METHODS:From 2008 to 2019,a retrospective analysis was performed on 167 patients with TSCC who were treated in the Cancer Hospital Affiliated to Shantou University Medical College.Cox regression analysis was used to identify independent prognostic factors associated with the overall survival(OS)which was used to build a nomogram and to predict OS.The predictive accuracy of the model was evaluated by calibration curve,decision curve(DCA)and the concordance index(C-index).RESULTS:Results from the multivariate Cox regression and Kaplan-Meier survival analyses show that B-factor(BF),monocyte count,lymphocyte-monocyte ratio,and tumor lymph node metastasis(TNM)stage were independent prognostic factors,which were used to build the prognostic nomogram model.The C-index of the nomogram was 0.754[95%CI(0.672,0.835)],which was higher than that of the TNM stage 0.679[95%CI(0.602,0.755)].The Akaike information criterion(AIC)and Bayesian information criterion(BIC)of the nomogram were 312.134 and 318.239,respectively.Both were lower than 319.163 and 320.689 for TNM stages alone,indicating that the nomogram has better goodness of fit for OS prediction.The calibration curves of the nomogram show good consistency between the predicted OS probabilities and the actual OS value of patients.In addition,time-dependent C-index analysis and DCA results show that the prognostic nomogram model had good predictive accuracy and discriminability compared with TNM stage.CONCLUSION:A nomogram model based on clinicopathological features and preoperative inflammation-related indicators may be useful in predicting the prognosis of TSCC patients undergoing surgery.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30