检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何健[1] 余宇峰[2] 冯胜男 邓劲柏 李凯[1] HE Jian;YU Yufeng;FENG Shengnan;DENG Jinbai;LI Kai(Jiangsu Province Hydrology and Water Resources Investigation Bureau,Nanjing 210029,China;College of Computer and Information,Hohai University,Nanjing 211110,China)
机构地区:[1]江苏省水文水资源勘测局,江苏南京210029 [2]河海大学计算机与信息学院,江苏南京211110
出 处:《江苏水利》2023年第10期1-5,共5页Jiangsu Water Resources
基 金:江苏省水利科技项目(2021065);国家重点研发计划(2021YFB3900605)。
摘 要:洪水过程具有高度非线性、复杂性和非平稳性特征。将自适应步长的布谷鸟搜索(ASCS)算法应用于神经网络水文模型参数优化中,构建ASCS-LSTM洪水预报模型,并采用注意力机制进一步提高输入输出的相关性,实现高精度的智能洪水预测。在秦淮河流域的水位预测实验表明,ASCS-LSTM预报模型的预报结果要优于传统机器学习模型,稳定性和精确度得到提升,可为水文预报提供新思路。The flood process is highly nonlinear,complex and non-stationary.The ASCS-LSTM flood forecasting model is built,which adopts adaptive step size cuckoo search(ASCS)algorithm to optimize parameter of LSTM neural network hydrological model,and which applies the attention mechanism to further improve the relevance of input and output to achieve high-precision intelligent flood prediction.The water level prediction experiments in Qinhuai River basin show that ASCS-LSTM forecasting model can achieve more stable and accurate forecasting results than those of traditional machine learning model,and thus providing a new idea for hydrological forecasting.
关 键 词:水文预报 记忆网络 搜索算法 LSTM ASCS
分 类 号:TV124[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229