纪检监察领域本体构建与元数据集成  

Ontology Construction and Metadata Integration in Discipline Inspection and Supervision Field

在线阅读下载全文

作  者:张聪 王海龙 柳林 ZHANG Cong;WANG Hailong;LIU Lin(College of Computer Science and Technology,Inner Mongolia Normal University,Hohhot 010022,China)

机构地区:[1]内蒙古师范大学计算机科学技术学院,内蒙古呼和浩特010022

出  处:《内蒙古师范大学学报(自然科学汉文版)》2023年第5期544-550,共7页Journal of Inner Mongolia Normal University(Natural Science Edition)

基  金:内蒙古自治区纪检监察大数据实验室2020—2021年度开放课题(IMDBD2020014)。

摘  要:纪检监察领域各数据来源之间由于应用目的、数据存储规范及格式的不同,导致各系统数据在集成过程中存在语义异构问题,数据存储成本较高。在本体理论基础上,提出面向纪检监察多源异构环境下的元数据集成方法:即给出局部本体构建的约束规则,以约束规则为指导,构建出领域本体,并提出一种元数据抽取方法,将本体转化为纪检监察元数据,完成相关元数据集成。纪检监察领域本体的构建和元数据集成为该领域的多源异构数据集成提供了一种有效方法,降低了数据集规模,提高了数据集成度,为数据共享和深度分析提供了支撑。The data sources in the field of discipline inspection and supervision have different application purposes,data storage specifications and formats which result in the problem of semantic heterogeneity in the integration process of data from various systems and high costs of data storage.A metadata integration method was proposed in the paper based on ontology theory for discipline inspection and supervision in a multi-source heterogeneous environment,which gave the constraint rules for local ontology construction,and used the constraint rules as a guide to construct the domain ontology,and then proposed a metadata extraction method to transform the discipline inspection and supervision domain ontology into discipline inspection and supervision metadata,and completed the related metadata integration.The construction of the discipline inspection and supervision field ontology and metadata set provided an effective method for integrating multi-source heterogeneous data in the field,which reduced the size of the data set,improved the data integration and provided support for data sharing and deep data analysis.

关 键 词:本体构建 纪检监察 元数据 领域本体 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象