检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bin Fang Qiu-Jian Zhu Hui Yang Li-Cheng Fan
机构地区:[1]School of Mechanical and Electrical Engineering,Soochow University,Suzhou 215100,Jiangsu Province,China [2]Lixiang Eye Hospital of Soochow University,Suzhou 215021 Jiangsu Province,China
出 处:《International Journal of Ophthalmology(English edition)》2023年第10期1561-1567,共7页国际眼科杂志(英文版)
摘 要:AIM:To analyze ultrasound biomicroscopy(UBM)images using random forest network to find new features to make predictions about vault after implantable collamer lens(ICL)implantation.METHODS:A total of 450 UBM images were collected from the Lixiang Eye Hospital to provide the patient’s preoperative parameters as well as the vault of the ICL after implantation.The vault was set as the prediction target,and the input elements were mainly ciliary sulcus shape parameters,which included 6 angular parameters,2 area parameters,and 2 parameters,distance between ciliary sulci,and anterior chamber height.A random forest regression model was applied to predict the vault,with the number of base estimators(n_estimators)of 2000,the maximum tree depth(max_depth)of 17,the number of tree features(max_features)of Auto,and the random state(random_state)of 40.0.RESULTS:Among the parameters selected in this study,the distance between ciliary sulci had a greater importance proportion,reaching 52%before parameter optimization is performed,and other features had less influence,with an importance proportion of about 5%.The importance of the distance between the ciliary sulci increased to 53% after parameter optimization,and the importance of angle 3 and area 1 increased to 5% and 8%respectively,while the importance of the other parameters remained unchanged,and the distance between the ciliary sulci was considered the most important feature.Other features,although they accounted for a relatively small proportion,also had an impact on the vault prediction.After parameter optimization,the best prediction results were obtained,with a predicted mean value of 763.688μm and an actual mean value of 776.9304μm.The R²was 0.4456 and the root mean square error was 201.5166.CONCLUSION:A study based on UBM images using random forest network can be performed for prediction of the vault after ICL implantation and can provide some reference for ICL size selection.
关 键 词:random forest network ultrasound biomicroscopy images vault prediction implantable collamer lens
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33