检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马旭聪 唐文虎[1] 牛哲文 辛妍丽 MA Xucong;TANG Wenhu;NIU Zhewen;XIN Yanli(School of Electric Power,South China University of Technology,Guangzhou 510641,China)
出 处:《高压电器》2023年第10期120-128,共9页High Voltage Apparatus
基 金:国家自然科学基金资助项目(51977082);广东电网有限责任公司科技项目(GDKJXM20190005)。
摘 要:变压器绕组是变压器中最常发生故障的部分,故障类型多且常见程度不同。目前已有学者将机器学习应用于变压器绕组变形故障识别,但存在数据集不均衡时预测准确率低、运算时间长、所需样本量大等问题。为了解决上述的问题,文中提出了一种非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法,收集了变压器故障样本并搭建多种故障诊断模型进行对比以验证所提出方法的有效性。经过模型训练和验证,使用孪生卷积网络在非均衡数据集下进行变压器绕组变形故障识别正确率达到90%左右,高于卷积网络(CNN)、支持向量机(SVM)等其他方法的正确率。The winding is the most frequently faulted part of transformers,with multiple types and different probability of occurrence.At present,some researchers apply the machine learning to the deformation fault identification of transformer winding which,however,has such problems as low prediction accuracy under data skew,long operation time and large number of samples.For solving the problems mentioned above,a fault identification method for transformer winding using twin convolutional network under unbalanced data set is proposed in this paper.The fault sample of the transformer is collected and multiple types of fault models are set up for comparison to verify the effectiveness of the proposed method.Throughout model training and verification,the accuracy rate of deformation fault identification of transformer winding under the unbalanced data set reaches around 90%,which is higher than the accuracy rate of other methods such as convolutional neural networks(CNN)and support vector machine(SVM).
关 键 词:孪生网络 电力变压器 绕组变形故障 非均衡数据集
分 类 号:TM407[电气工程—电器] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.211.72