检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏连成[1] 朱娇娇 李英伟[2] Su Liancheng;Zhu Jiaojiao;Li Yingwei(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China;School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China)
机构地区:[1]燕山大学电气工程学院,秦皇岛066004 [2]燕山大学信息科学与工程学院,秦皇岛066004
出 处:《太阳能学报》2023年第7期427-435,共9页Acta Energiae Solaris Sinica
基 金:国防基础研究计划(JCKY2019407C002)。
摘 要:为提高短期风电功率预测的准确性,提出一种基于时间卷积网络残差校正模型的短期风电功率预测方法。首先,采取自适应噪声完备集合经验模态分解算法分离出风电功率的局部特征信息,以网格搜索与交叉验证算法优化的支持向量回归模型对各分量进行预测。然后,构建时间卷积网络残差预测模型,并使用灰色关联度分析方法选择输入特征,对支持向量回归预测结果进行校正。最后,基于提出的模型对某风电场实际运行功率进行预测并与其他方法的预测精度进行比较,结果表明,该文所提方法提高了短期风电功率预测的精度。A short-term wind power prediction method based on temporal convolutional network residual correction model is proposed to improve the accuracy of short-term wind power prediction.Firstly,using the complete ensemble empirical mode decomposition with adaptive noise algorithm to separate the local characteristic information of original wind power data,each component is predicted by the support vector regression model which is optimized by grid search and cross-validation algorithm.Secondly,a temporal convolutional network residual prediction model is constructed,and the gray correlation analysis method is used to select the input features of the residual prediction model to correct the support vector regression prediction results.Finally,based on the proposed model,the actual operating power of a wind farm is predicted and compared with the prediction accuracy of other methods.The results verify that the proposed method improves the accuracy of short-term wind power prediction.
关 键 词:风电功率预测 自适应噪声完备集合经验模态分解 时间卷积网络 灰色关联度分析 残差校正
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147