The convergence properties of infeasible inexact proximal alternating linearized minimization  被引量:1

在线阅读下载全文

作  者:Yukuan Hu Xin Liu 

机构地区:[1]State Key Laboratory of Scientific and Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Science China Mathematics》2023年第10期2385-2410,共26页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.12125108,11971466,11991021,11991020,12021001 and 12288201);Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-7022);CAS(the Chinese Academy of Sciences)AMSS(Academy of Mathematics and Systems Science)-PolyU(The Hong Kong Polytechnic University)Joint Laboratory of Applied Mathematics.

摘  要:The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-form solutions,e.g.,due to complex constraints,infeasible subsolvers are indispensable,giving rise to an infeasible inexact PALM(PALM-I).Numerous efforts have been devoted to analyzing the feasible PALM,while little attention has been paid to the PALM-I.The usage of the PALM-I thus lacks a theoretical guarantee.The essential difficulty of analysis consists in the objective value nonmonotonicity induced by the infeasibility.We study in the present work the convergence properties of the PALM-I.In particular,we construct a surrogate sequence to surmount the nonmonotonicity issue and devise an implementable inexact criterion.Based upon these,we manage to establish the stationarity of any accumulation point,and moreover,show the iterate convergence and the asymptotic convergence rates under the assumption of the Lojasiewicz property.The prominent advantages of the PALM-I on CPU time are illustrated via numerical experiments on problems arising from quantum physics and 3-dimensional anisotropic frictional contact.

关 键 词:proximal alternating linearized minimization INFEASIBILITY nonmonotonicity surrogate sequence inexact criterion iterate convergence asymptotic convergence rate 

分 类 号:O241.6[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象