检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周威振 马越 邓集瀚 毛玉星[2] 黄澳丽 ZHOU Wei-zhen;MA Yue;DENG Ji-han;MAO Yu-xing;HUANG Ao-li(Dali Bureau,China Southern Power Grid Co.,Ltd.,Dali 671000,China;School of Electrical Engineering,Chongqing University,Chongqing 400044,China)
机构地区:[1]南方电网超高压输电公司大理局,云南大理671000 [2]重庆大学电气工程学院,重庆400044
出 处:《变压器》2023年第9期31-35,共5页Transformer
摘 要:本文中作者提出了基于FedAVG-SA-BP方法的变压器油中气体分析(Dissolved Gas Analysis, DGA)故障诊断模型,采用Self-attention(SA)机制捕捉气体特征间的相关性,以及Federated Averaging(FedAVG)解决变压器DGA故障诊断中训练样本缺失的问题。试验结果表明,与传统的BP网络DGA故障诊断方法相比,该方法能够显著提高电力变压器故障诊断的准确性。This paper proposes a transformer oil dissolved gas analysis(DGA)fault diag-nosis model based on FedAVG-SA-BP,which adapts the self-attention(SA)mechanism to capture the correlation between gas characteristic,and the federated averaging(Fe-dAVG)to deal with the insufficient training sample issue in DGA fault diagnosis.The ex-perimental results suggest that the proposed method can significantly improve the DGA diagnosis accuracy comparing with the traditional BP-based methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.253.54