检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晨 陈洋[1,2] 符浩 LIU Chen;CHEN Yang;FU Hao(Institute of Robotics and Intelligent Systems,Wuhan University of Science and Technology,Wuhan Hubei 430081,China;Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education(Wuhan University of Science and Technology),Wuhan Hubei 430081,China;School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan Hubei 430081,China)
机构地区:[1]武汉科技大学机器人与智能系统研究院,武汉430081 [2]冶金自动化与检测技术教育部工程研究中心(武汉科技大学),武汉430081 [3]武汉科技大学计算机科学与技术学院,武汉430081
出 处:《计算机应用》2023年第10期3290-3296,共7页journal of Computer Applications
基 金:国家自然科学基金资助项目(62173262,62073250)。
摘 要:使用无人机(UAV)持续监测指定区域可以起到威慑入侵破坏、及时发现异常等作用,然而固定的监测规律容易被入侵者发现,因此需要设计UAV飞行路径的随机算法。针对以上问题,提出一种基于值函数迭代(VFI)的UAV持续监测路径规划算法。首先,合理选择监测目标点的状态,并分析各监测节点的剩余时间;其次,结合奖励/惩罚收益和路径安全性约束构建该监测目标点对应状态的值函数,在VFI算法过程中基于ε原则和轮盘选择随机选择下一节点;最后,以所有状态的值函数增长趋于饱和为目标,求解UAV持续监测路径。仿真实验结果表明,所提算法获得的信息熵为0.9050,VFI运行时间为0.3637 s,相较于传统蚁群算法(ACO),所提算法的信息熵提升了216%,运行时间降低了59%,随机性与快速性均有所提升,验证了具有随机性的UAV飞行路径对提高持续监测效率具有重要意义。The use of Unmanned Aerial Vehicle(UAV)to continuously monitor designated areas can play a role in deterring invasion and damage as well as discovering abnormalities in time,but the fixed monitoring rules are easy to be discovered by the invaders.Therefore,it is necessary to design a random algorithm for UAV flight path.In view of the above problem,a UAV persistent monitoring path planning algorithm based on Value Function Iteration(VFI)was proposed.Firstly,the state of the monitoring target point was selected reasonably,and the remaining time of each monitoring node was analyzed.Secondly,the value function of the corresponding state of this monitoring target point was constructed by combining the reward/penalty benefit and the path security constraint.In the process of the VFI algorithm,the next node was selected randomly based onεprinciple and roulette selection.Finally,with the goal that the growth of the value function of all states tends to be saturated,the UAV persistent monitoring path was solved.Simulation results show that the proposed algorithm has the obtained information entropy of 0.9050,and the VFI running time of 0.3637 s.Compared with the traditional Ant Colony Optimization(ACO),the proposed algorithm has the information entropy increased by 216%,and the running time decreased by 59%,both randomness and rapidity have been improved.It is verified that random UAV flight path is of great significance to improve the efficiency of persistent monitoring.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198