克利福德值分数阶细胞神经网络的概自守解  被引量:1

Almost Automorphic Solutions of Clifford-valued Fractional-order CellularNeural Networks

在线阅读下载全文

作  者:王瑶路 李雯雯 WANG Yaolu;LI Wenwen(Department of Public Basic Education of Henan Vocational University of Science and Technology,Zhoukou Henan 466000,China)

机构地区:[1]河南科技职业大学公共基础教学部,河南周口466000

出  处:《四川文理学院学报》2023年第5期32-38,共7页Sichuan University of Arts and Science Journal

摘  要:研究一类Clifford值Caputo分数阶细胞神经网络的概自守解的存在性和Mittag-Leffler稳定性.所采用的主要的方法是将复杂的Clifford值神经网络转化为高维的实值神经网络来进行研究.其次,根据压缩映射原理,得到了这类神经网络概自守解存在唯一性的充分条件.然后通过构造Lyapunov泛函来研究概自守解的Mittag-Leffler稳定性存在的条件.最后,用一个具体例子来阐述所得结果的有效性.The existence and Mittag-Leffler stability of Almost automorphic solutions for a class of Clifford-valued Caputo fractional cellular neural networks were studied.The main method used was to convert complex Clifford-valued neural networks into high-dimensional real-valued neural networks for research.Secondly,according to Contraction mapping principle,the sufficient conditions for the existence and uniqueness of the almost automorphic solution of this kind of neural network were obtained.Then,the conditions for the existence of Mittag-Leffler stability of the almost automorphic solution were studied by constructing Lyapunov functionals.Finally,a specific example was used to illustrate the validity of the results.

关 键 词:克利福德值神经网络 概自守解 压缩映射原理 Mittag-Leffler稳定性 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象