检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张峥 仲兆准 李阳 章顺虎 ZHANG Zheng;ZHONG Zhaozhun;LI Yang;ZHANG Shunhu(School of Iron and Steel,Soochow University,Suzhou 215100,Jiangsu,China)
出 处:《钢铁研究学报》2023年第8期1017-1024,共8页Journal of Iron and Steel Research
基 金:国家自然科学基金资助项目(52074187)。
摘 要:为提高带钢精轧宽展预测精度,结合实际生产数据,建立了基于支持向量机的回归预测模型。首先采用数据清洗、独热编码和主成分分析等方法对样本数据进行预处理,通过交叉验证法对惩罚参数和径向基函数核参数进行寻优,由此确立最佳模型结构。针对测试数据,分别采用回归预测模型、BP神经网络模型和经验公式进行预测,并从平均误差、最大偏差和误差分布等多个角度进行对比。结果表明,回归模型预测下的各项误差指标优势明显,绝对误差在2 mm内的分布占比达到94.52%。In order to enhance the prediction accuracy of hot strip finishing mill,combined with the actual production data of strip finish rolling process,a regression prediction model based on support vector machine was established.First,the sample data were preprocessed by data cleaning,One-Hot encoding and principal component analysis,and the penalty parameters and radial basis function kernel parameters were optimized by cross validation to establish the optimal model structure.Depending on the test data,regression prediction model,BP neural network model and the empirical formula were respectively used for prediction.Comparisons were made from the average error,maximum deviation and error distribution.The results show that the advantages of each error indicators under the prediction of the regression model are obvious,and the absolute error distribution within 2mm accounts for 94.52%.
分 类 号:TG335.5[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170