一维分数阶PT对称对数非线性系统中孤子特性研究  

Study on properties of solitons in two-dimensional logarithmically nonlinear fractional schrödinger equation with PT-symmetric potential

在线阅读下载全文

作  者:舒东东 江光裕[1] SHU Dongdong;JIANG Guangyu(School of Measuring and Optical Engineering,Nanchang Hangkong University,Nanchang 330063,China)

机构地区:[1]南昌航空大学测试与光电工程学院,南昌330063

出  处:《激光杂志》2023年第9期19-23,共5页Laser Journal

基  金:国家自然科学基金项目(No.11864026);研究生创新基金项目(No.YC2017050,YC2021-068)。

摘  要:建立一维分数阶PT对称(parity-time symmetry)对数非线性系统的理论模型,数值分析在不同的参数条件下一维分数阶PT对称对数非线性系统中孤子的存在、稳定性和传输演化特性。结果表明,当分数阶效应莱维指数保持不变时,随着传播常数增大,孤子功率增加且具有良好的对称性,而非线性效应变强,孤子稳定区域变大并且在传输过程中稳定性变差;当分数阶效应莱维指数增加时,随着传播常数增大,孤子功率减少,分数阶衍射效应有效地补偿非线性效应,孤子能够稳定且在传输过程中能够稳定地传输。The theoretical model is established for one-dimension Logarithmical nonlinear fractional Schrödinger equation with PT-symmetric potential,and the existence,stability and transmission evolution characteristics of solitons are investigated numerically in one-dimensional fractional order PT-symmetric Logarithmical nonlinear system under different parameter conditions.The results show that when the Levi index keeps unchanged,the nonlinear effect becomes stronger,the stable region becomes large,and the stability becomes worse during the soliton transmission.As the fractional effect Levi index is increased,the soliton power decreases with the increase of the propagation constant,the fractional diffraction effect can effectively compensate for the nonlinear effect,and the solitons can transmit stably.

关 键 词:非线性光学 分数阶效应 对数非线性系统 孤子特性 

分 类 号:O47[理学—半导体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象