检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊子慧 田瑞 程洁 卢丝丽 彭建新[1,2] 何军明[1,2] XIONG Zihui;TIAN Rui;CHENG Jie;LU Sili;PENG Jianxin;HE Junming(The Second Clinical Medical School,Guangzhou University of Chinese Medicine,Guangzhou 510405,P.R.China;Department of Hepatobiliary Surgery,Guangdong Provincial Hospital of Traditional Chinese Medical,Guangzhou 510120,P.R.China)
机构地区:[1]广州中医药大学第二临床医学院,广州510405 [2]广东省中医院肝胆外科,广州510120
出 处:《中国循证医学杂志》2023年第10期1129-1136,共8页Chinese Journal of Evidence-based Medicine
基 金:广东省自然科学基金项目(编号:2022A1515011632)。
摘 要:目的 探讨肝内胆管癌(ICC)肝切除术后的危险因素,并构建生存预后列线图。方法 从SEER数据库中筛选2004—2015年诊断为ICC并行肝切除术的患者,采用LASSO回归、COX回归分析筛选独立预后因素,构建列线图,用一致性指数、ROC曲线、校准曲线和决策曲线分析评价列线图的预测性能。结果 多因素COX回归结果显示:年龄、性别、病理分期、T分期、肿瘤直径、阳性淋巴结数目等均是影响ICC肝切除术后患者癌症特异性生存期(CSS)的独立预后因素。根据以上6个因素构建列线图,建模组中列线图的C-index为0.66[95%CI(0.64,0.69)],1、3、5年的AUC分别为0.68、0.74和0.75;验证组中的C-index为0.67[95%CI(0.63,0.72)],1、3、5年的AUC分别为0.69、0.68和0.71。结论 基于年龄、性别、病理分期、T分期、肿瘤直径、阳性淋巴结数目6个因素构建的预测模型具有良好的预后诊断准确度,有助于临床决策和个体化治疗。Objective To develop and validate a nomogram for predicting the cancer-specific survival in patients with intrahepatic cholangiocarcinoma(ICC) after hepatectomy. Methods Suitable patient cases were selected from the Surveillance, Epidemiology, and End Results(SEER) database. Nomograms were established based on the independent prognostic factors identified by COX and Lasso regression models. The performance of the nomograms was validated internally and externally by using the concordance index(c-index), calibration plot, and decision curve analysis. Results The multi factor COX regression results showed that: age, gender, T stage, tumor grade, tumour diameter and number of positive lymph nodes were independent prognostic predictors for cancer-specific survival(CSS) in ICC patients.Nomogram predicting CSS had a c-index of 0.66(95%CI 0.64 to 0.69) in the training cohort and 0.67(95%CI 0.63 to 0.72)in the internal validation cohort. The 1-, 3-and 5-year areas under the curve(AUC) of nomogram were 0.68, 0.74 and 0.75in the training cohort respectively. In the validation cohort, the 1-, 3-and 5-year AUC of nomogram were 0.69, 0.68 and0.71, respectively. Conclusion The prediction model constructed based on six factors, including age, gender,pathological stage, T-stage, tumour diameter and number of positive lymph nodes, shows good prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33