检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李在瑞 郑永果 东野长磊 LI Zairui;ZHENG Yongguo;DONGYE Changei(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao Shandong 266590,China)
机构地区:[1]山东科技大学计算机科学与工程学院,山东青岛266590
出 处:《智能计算机与应用》2023年第10期83-87,共5页Intelligent Computer and Applications
摘 要:针对高分辨率遥感图像中物体排布密集、尺度变化较大等特性,提出一种目标检测算法R-YOLOv5。算法在YOLOv5模型基础上首先将跨阶段局部扩张结构作用于主干网络,采用一种加强的特征提取方式,通过整合空洞卷积和密集连接,来缓解模型对密集分布目标的漏检问题;其次,在主干网络的瓶颈部分结合Transformer模块来增强特征的表达,突出目标区域;最后,引入多尺度特征融合模块,解决多尺度特征融合时存在的不一致性问题,以提高模型的检测效果。在公开的遥感图像检测数据集DIOR的实验结果表明,R-YOLOv5算法平均精度均值(mAP)达到80.6%,具有良好的检测性能。Aiming at the characteristics of dense distribution and large scale variation of objects in high-resolution remote sensing images,an object detection algorithm R-YOLOv5 is proposed.On the basis of YOLOv5 model,the algorithm firstly introduces Cross Stage Partial Dilated Network in the backbone network,which adopts an enhanced feature extraction method to alleviate the problem of undetected dense distributed targets by integrating dilated convolution and dense connection.Secondly,in the bottleneck part of the backbone network,the Transformer module is combined to enhance the expression of features and highlight the target area.Finally,multi-scale feature fusion module is introduced to solve the inconsistency problem in multi-scale feature fusion to improve the detection effect of the model.The experimental results on public remote sensing image detection dataset DIOR show that the MAP of R-YOLOv5 reaches 80.6%,which has good detection performance.
关 键 词:遥感图像 目标检测 分布密集 YOLO 空洞卷积
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.70.182