检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李旭 董博 党恩辉 LI Xu;DONG Bo;DANG Enhui(Xi’an Hertz Universe Information Technology Co.,Ltd.,Xi’an 710075,China)
机构地区:[1]西安合智宇信息科技有限公司,陕西西安710075
出 处:《煤矿安全》2023年第9期208-211,共4页Safety in Coal Mines
摘 要:为了防止煤炭开采运输过程中的异物对运输设备和生产设备产生损坏,结合传统的带式输送机检测系统研制了一种基于机器视觉深度学习的带式输送机故障辅助识别系统;通过图像算法库进行图像预处理,增强系统对有关信息的可检测性;使用深度学习训练得出的识别网络模型利用监控视频对异物进行识别,提高系统识别异物的准确率,有效提高运输环节的运输效率。试验结果表明:故障辅助识别系统可以保证综采工作面运输系统的正常运行。In order to prevent the foreign matters in the process of coal mining and transportation from damaging the transportation equipment and production equipment,it is proposed to research a belt conveyor fault auxiliary recognition system based on machine vision deep learning in combination with the traditional belt conveyor detection system.Image preprocessing is carried out through the image algorithm library to enhance the detectability of the system for relevant information;the recognition network model obtained by in-depth learning training uses monitoring video to identify foreign objects,improve the accuracy of the system to identify foreign objects,and effectively improve the transport efficiency of the transport link.The test results indicate that the fault auxiliary identification system can ensure the normal operation of the transportation system in the fully mechanized mining face.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200