检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高金祥 车波 蔡慧玲 肖鹏 张立建 蔡志远 朱长飞 唐荣风 陈涛 Jinxiang Gao;Bo Che;Huiling Cai;Peng Xiao;Lijian Zhang;Zhiyuan Cai;Changfei Zhu;Rongfeng Tang;Tao Chen(Department of Materials Science and Engineering,School of Chemistry and Materials Science,University of Science and Technology of China,Hefei 230026,China;Institute of Energy,Hefei Comprehensive National Science Center,Hefei 230041,China)
机构地区:[1]Department of Materials Science and Engineering,School of Chemistry and Materials Science,University of Science and Technology of China,Hefei 230026,China [2]Institute of Energy,Hefei Comprehensive National Science Center,Hefei 230041,China
出 处:《Science China Materials》2023年第9期3415-3423,共9页中国科学(材料科学(英文版)
基 金:supported by the National Natural Science Foundation of China (22005293, U19A2092 and 22275180);the National Key Research and Development Program of China (2019YFA0405600);the Institute of Energy, Hefei Comprehensive National Science Center (21KZS212);the Collaborative Innovation Program of Hefei Science Center, CAS。
摘 要:硒化锑(Sb_(2)(S,Se)_(3))因其高化学稳定性、绝佳光电特性和低成本等优势而成为一种有前途的光伏材料.在新兴的太阳能领域中,开发合适的材料加工方法控制元素比例,从而达到钝化Sb_(2)(S,Se)_(3)薄膜的深能级缺陷的目的,是基本需求也是挑战.在此,我们开发了一种阴离子元素比例控制方法,通过烧结Sb,S和Se元素前体来调整Sb_(2)(S,Se)_(3)合金化合物中的阴离子摩尔比.我们可以相当精确地估计出,通过单源热蒸发过程蒸发预烧结Sb_(2)(S,Se)_(3)合金化合物而制备的单相Sb_(2)(S,Se)_(3)薄膜中的阴离子摩尔比.我们发现,获得的Sb_(2)(S,Se)_(3)薄膜可以基本保持前体合金化合物的阴离子元素比例,这为控制薄膜的组成提供了一个高效的方法.我们还证明了深层缺陷和定向晶体生长对S/Se原子比的依赖性,以及如何利用这种可调性来改善与光伏能源转换相关的载流子传输.通过引入低成本的CuPc掺杂的P3HT作为空穴传输层,实现了高效的Sb_(2)(S,Se)_(3)太阳能电池,功率转换效率达到8.25%.我们的研究提出了一种新的方法来制造金属硫化物半导体薄膜,并实现了Sb_(2)(S,Se)_(3)太阳能电池的性能改进.Antimony selenosulfide(Sb_(2)(S,Se)_(3))is a promising photovoltaic material because of its high chemical stability,optimal optoelectronic properties,and low-cost advantages.However,finding suitable material processing approaches to obtain elemental controlled Sb_(2)(S,Se)_(3) films with suppressed deep-level defects poses fundamental demands and challenges to developing this emerging solar technology.Here,we developed a robust method for tailoring the composition of the film through controlling the anion elements.The films were prepared by evaporating the presintered Sb_(2)(S,Se)_(3) alloy compound via a single-source thermal evaporation process.A quasi-precise estimate of single-phase Sb_(2)(S,Se)_(3) films was made by sintering Sb,S,and Se elemental precursors and adjusting the anion molar ratio in the prefabricated Sb_(2)(S,Se)_(3) alloy compound,and the elemental ratio of the precursor alloy compound was maintained in the as-obtained Sb_(2)(S,Se)_(3) films.A highly efficient Sb_(2)(S,Se)_(3) solar cell with a power conversion efficiency of 8.25%was achieved by introducing low-cost CuPc-doped P3HT as a hole-transporting layer.Here,we demonstrate the dependence of deep-level defects and oriented crystal growth on the S/Se atomic ratios and show how tunability can be used to improve carrier transport for photovoltaic energy conversion.Our study presents a novel approach to fabricating metal chalcogenide semiconducting films and improving the performance of Sb_(2)(S,Se)_(3) solar cells.
关 键 词:太阳能电池 功率转换效率 光伏材料 热蒸发 高化学稳定性 半导体薄膜 金属硫化物 材料加工
分 类 号:TM914.4[电气工程—电力电子与电力传动] TB383.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.7.73