检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韦雨亭 刘欣伟 孙金磊[1] 景含笑 温珂镌 WEI Yuting;LIU Xinwei;SUN Jinlei;JING Hanxiao;WEN Kejuan(School of Automation,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)
机构地区:[1]南京理工大学自动化学院,江苏南京210094
出 处:《电源技术》2023年第10期1308-1312,共5页Chinese Journal of Power Sources
基 金:国家自然科学基金项目(52007085)。
摘 要:针对锂电池老化过程中特征不明显、对容量波动点追踪不准确、模型长期使用后精度下降等问题,提出了一种基于灰色关联分析(GRA)-反向传播(BP)神经网络的锂电池剩余容量估计方法。通过GRA筛选出能够表征电池老化的特征量,利用计算机辅助寿命周期工程中心(CALCE)公开的锂电池充放电数据集训练BP神经网络模型,并实现电池剩余容量估计。结果表明,对于同一电池,训练集占80%时,容量衰减的估计误差为2.28%,在训练集仅占20%的情况下,估计误差为5.99%。A method based on the GRA-BP neural network for estimating the residual capacity of lithium batteries was proposed to address the problems of inconspicuous features in the aging process of lithium batteries,inaccurate tracking of capacity fluctuation points,and degradation of the accuracy of the model after long-term use.After filtering the feature vectors that can characterize the battery aging through grey relation analysis(GRA),the back propagation(BP)neural network model was trained by using the battery charging and discharging dataset published by the center for advanced life cycle engineering(CALCE)to estimate the battery residual capacity.The results show that the estimation error of capacity decay is 2.28%for the same battery with 80%of the training set and 5.99%with only 20%of the training set.
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15