检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:伍彩云[1] 翁宇 白帆 WU Caiyun;GONG Yu;BAI Fan(Shenyang Ligong University,Shenyang 110159,China)
出 处:《沈阳理工大学学报》2023年第6期1-9,共9页Journal of Shenyang Ligong University
基 金:国家自然科学基金青年基金项目(62102272)。
摘 要:针对复杂环境下高速飞行的穿越机面临碰撞、坠毁等安全威胁的问题,设计一种新的高动态无人机飞行通道辅助系统,将基于景深的人工势场法与深度学习算法相结合,设计一个深度通道轨迹预测网络(DCTN)预测景深信息及其飞行通道,并结合无人机位姿信息和视角图像预测当前位置下可能的避障轨迹,以避免无人机与障碍物的碰撞。使用Jetson TX2作为机载图形处理单元进行验证实验,结果表明,DCTN算法的每个轨迹所需要的生成时间比传统人工势场法有显著的降低,而且能以较低成本达到与碰撞检查和规划算法RAPPIDS相同数量级的响应时间,能够满足无人机在高动态场景下的应用需求。For the problem that collision,crash and other safety threats may happen to a high-speed flying First Person View Droneuses in a complex environment,a new highly dy-namic UAV flight channel assistance system is designed,combining the depth-of-field based artificial potential field method with deep learning algorithms to design a depth channel traj-ectory prediction network(DCTN)to predict the depth-of-field information and its flight channel,and combining the UAV attitude information with viewpoint image to predict the possible obstacle avoidance trajectory under the current position,so as to avoid the collision between the UAV and the obstacles.The results show that the proposed DCTN algorithm needs significantly less time to generate each trajectory than the traditional manual potential field method,and can achieve the same order of magnitude response time as the collision checking and planning algorithm RAPPIDS at a lower cost,which can meet the requirements of UAV applications in highly dynamic scenarios.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15