检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张衡 刘海江[1] ZHANG Heng;LIU Haijiang(School of Mechanical Engineering,TongJi University,Shanghai 201804,China)
机构地区:[1]同济大学机械与能源工程学院,上海201804
出 处:《航天器环境工程》2023年第5期522-530,共9页Spacecraft Environment Engineering
基 金:上海市科学技术委员会基金项目(编号:15111103402)。
摘 要:针对不同材质的高精密航天器多余物信号检测存在特征重叠、可重复性较差的问题,提出基于梅尔频率倒谱系数(MFCC)与概率神经网络(PNN)的多余物材质特征识别方法。借鉴语音识别技术,设计了一种基于能量加权MFCC的多余物材质脉冲特征提取方法;构建了基于MFCC和优化PNN的单个多余物材质脉冲分类模型;利用每个多余物材质脉冲的分类信息构建多余物材质可信度,实现对铝屑、焊锡、塑料和橡胶4种典型材质的识别。经实验验证,该分类模型对单个多余物材质的识别准确率均在90%以上,对2个多余物材质的识别准确率均在80%以上。Aiming at the problems of feature overlap and poor repeatability in the signal detection for different remainder materials of high precision spacecraft,a method for feature identification of remainder materials based on Mel frequency cepstrum coefficient(MFCC)and probabilistic neural network(PNN)was proposed.Inspired by the speech recognition technology,a method for pulse feature extraction of remainder material based on energy weighted MFCC was designed.A model for pulse classification of individual remainder material based on MFCC and optimized PNN was constructed.The pulse classification information of each remainder material was used to build the credibility of the remainder material,and the identification of four kinds of typical materials,including aluminum,solder,plastic and rubber,was realized.The experimental results show that the identification accuracy is above 90%for single remainder material,and is above 80%for two kinds of remainder materials.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.64.200