检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Pascal Heid
机构地区:[1]Mathematical Institute,University of Oxford,Woodstock Road,Oxford OX26GG,UK
出 处:《Journal of Computational Mathematics》2023年第5期933-955,共23页计算数学(英文)
基 金:the financial support of the Swiss National Science Foundation(SNSF),Project No.P2BEP2_191760.
摘 要:The purpose of this paper is to verify that the computational scheme from[Heid et al.,Gradient flow finite element discretizations with energy-based adaptivity for the Gross–Pitaevskii equation,J.Comput.Phys.436(2021)]for the numerical approximation of the ground state of the Gross–Pitaevskii equation can equally be applied for the effective approximation of excited states of Schr¨odinger’s equation.That procedure employs an adaptive interplay of a Sobolev gradient flow iteration and a novel local mesh refinement strategy,and yields a guaranteed energy decay in each step of the algorithm.The computational tests in the present work highlight that this strategy is indeed able to approximate excited states,with(almost)optimal convergence rate with respect to the number of degrees of freedom.
关 键 词:Schrodinger’s equation Excited states Gradient flows Adaptive finite element methods
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3