检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周子轩 方帅[1] ZHOU Zixuan;FANG Shuai(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China)
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230601
出 处:《合肥工业大学学报(自然科学版)》2023年第10期1355-1361,共7页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(61872327)。
摘 要:在遥感领域,高分辨率高光谱图像(high-resolution hyperspectral images,HR-HSI)的获取极具挑战,通过融合低分辨率高光谱图像(low-resolution hyperspectral images,LR-HSI)与高分辨率多光谱图像(high-resolution multispectral images,HR-MSI)获得HR-HSI是较为经济的方式。基于光谱字典的传统融合算法在保持光谱连续性上效果优异,但空间信息的表现力仍有增强的潜力。为此,文章提出一种基于双字典的图像融合算法。首先利用LR-HSI和HR-MSI分别训练出光谱字典和空间字典,然后基于光谱字典和空间字典分别在光谱域和空间域得到光谱型高分辨率高光谱图像(spectral high-resolution hyperspectral images,Spc-HR-HSI)和空间型高分辨率高光谱图像(spatial high-resolution hyperspectral images,Spa-HR-HSI),并利用双域图像在迭代更新中相互约束,彼此促进,直至收敛,最终融合出HR-HSI。由于高光谱图像本身存在较强的低秩特性,该文利用局部低秩与非局部低秩约束,进一步增强目标图像的融合质量。实验结果表明,该文提出的算法融合结果优于其他对比算法。In the field of remote sensing,the acquisition of high-resolution hyperspectral images(HR-HSI)is extremely challenging.It is more economical to obtain HR-HSI by fusing low-resolution hyperspectral images(LR-HSI)with high-resolution multispectral images(HR-MSI).The traditional fusion algorithm based on spectral dictionary is excellent in spectral continuity,but the expressiveness of spatial information is still to be enhanced.Therefore,an image fusion algorithm based on double dictionary is proposed.Specifically,the spectral dictionary and the spatial dictionary are first trained by LR-HSI and HR-MSI,and then the spectral high-resolution hyperspectral images(Spc-HR-HSI)and spatial high-resolution hyperspectral images(Spa-HR-HSI)are obtained in the spectral domain and the spatial domain based on the spectral dictionary and the spatial dictionary respectively,and dual-domain images are constrained and promoted with each other in iterative update until convergence,so as to fuse out HR-HSI.In view of the strong low-rank characteristics of the HSI,the local low-rank and non-local low-rank constraints are used to further enhance the fusion quality of the target image.The experimental results show that the fusion results of the proposed algorithm are better than those of other comparison algorithms.
关 键 词:高光谱图像(HSI) 图像融合 双字典 光谱字典 空间字典 低秩
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200