基于掩蔽自监督语音特征提取的帕金森病检测方法  被引量:7

Parkinson's Disease Detection Method Based on Masked Self-supervised Speech Feature Extraction

在线阅读下载全文

作  者:季薇[1] 杨茗淇 李云[2] 郑慧芬 JI Wei;YANG Mingqi;LI Yun;ZHENG Huifen(School of Communication and Information Engineering,Nanjing University of Posts and Telecommunica-tions,Nanjing 210003,China;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Affiliated Geriatric Hospital of Nanjing Medical University,Nanjing 210024,China)

机构地区:[1]南京邮电大学通信与信息工程学院,南京210003 [2]南京邮电大学计算机学院,南京210023 [3]南京医科大学附属老年医院,南京210024

出  处:《电子与信息学报》2023年第10期3502-3510,共9页Journal of Electronics & Information Technology

基  金:江苏省高校基础科学(自然科学)重大项目(21KJA520003);江苏省研究生实践创新计划项目(SJCX21_0257)。

摘  要:帕金森病是一种常见的慢性神经系统疾病,构音障碍是帕金森病的早期症状之一。基于语音进行帕金森病的辅助诊疗有助于更早发现病情和观测病情的发展。传统方法常通过对语音特征(如频率微扰、振幅微扰等)的参数计算来进行疾病评估,然而这些特征可能无法全面反映所有的病理现象,从而影响了检测和评估的准确率。为更好地提取帕金森病患者语音中的病理信息,提升检测和评估的准确率,该文提出一种基于掩蔽自监督语音特征提取的帕金森病检测方法。首先,从帕金森病患者的原始语音中提取Mel语谱图特征,得到患者富含病理特征的全局时序化表示;然后,对部分Mel语谱图特征进行掩蔽,并通过掩蔽自监督模型对掩蔽部分进行重构,从而学习到帕金森病患者语音特征的更高级表示。为解决帕金森病语音数据稀缺的问题,该文先在LibriSpeech公开数据集上进行掩蔽自监督模型的预训练,然后基于迁移学习的思想,利用帕金森病语音数据对预训练好的掩蔽自监督模型进行微调和加权求和,以提升该模型特征表示学习的性能。最终,使用随机森林和支持向量机分类器分别对提取好的语音特征进行分类,以实现帕金森病的检测。该文在MaxLittle公开数据集和课题组自采数据集上,采用10折交叉验证的方法验证了所提方法的有效性。结果表明,与传统的Mel语谱图特征检测方法和其他经典的自监督特征提取方法相比,所提方法在准确率、敏感度、特异度性能方面均有明显提升。Parkinson’s disease is a common chronic neurological disease,and dysarthria is one of the early symptoms of this disease.The auxiliary diagnosis and treatment of Parkinson’s disease based on speech is helpful for early detection and observation of the development of this disease.Traditional methods evaluate often Parkinson’s disease by calculating the parameters of speech features(such as Jitter,Shimmer,etc.).However,these features may not fully reflect all pathological phenomena,which affects the accuracy of detection and evaluation.In order to extract better the pathological information from speech of patients with Parkinson’s disease and improve the accuracy of detection and evaluation,a Parkinson’s disease detection method based on masking self-supervised speech feature extraction is proposed.First,Mel spectrogram features are extracted from the original speech of Parkinson’s disease patients,and the global temporal representation with rich pathological features is obtained.Then,partial Mel spectrogram features are masked,and the masked parts are reconstructed by masking self-supervised model,so as to learn a higher-level representation of speech features of Parkinson’s disease patients.In order to solve the problem of the scarcity of Parkinson’s disease speech data,the masking self-supervised model will first be pre-trained on LibriSpeech public data set,and then based on the idea of transfer learning,the pre-trained model will be fine-tuned and weighted summed on Parkinson’s disease speech data.Thus,the feature representation learning performance of the proposed masking self-supervised model can be improved.Finally,random forest classifier and support vector machine classifier are used to classify the extracted speech features to achieve the detection of Parkinson’s disease.The effectiveness of the masking self-supervised model is verified on MaxLittle public data set and our self-collected data set by ten-fold cross-validation.The results show that,compared with the traditional Mel spec

关 键 词:帕金森病 自监督学习 迁移学习 特征提取 

分 类 号:TN911.7[电子电信—通信与信息系统] TP391.4[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象