MR T1WI瘤体及瘤周影像组学联合临床特征预测乳腺癌新辅助化疗疗效  被引量:14

MR T1WI intratumoral and peritumoral radiomics combined with clinical features for predicting effect of neoadjuvant chemotherapy for breast cancer

在线阅读下载全文

作  者:徐海敏 戴瑶 马雨竹 帅鸽 张妤[1] XU Haimin;DAI Yao;MA Yuzhu;SHUAI Ge;ZHANG Yu(Department of Radiology,Dushu Lake Hospital Affiliated to Soochow University,Suzhou 215004,China;Department of Radiology,the First Affiliated Hospital of Soochow University,Suzhou 215006,China)

机构地区:[1]苏州大学附属独墅湖医院放射科,江苏苏州215004 [2]苏州大学附属第一医院放射科,江苏苏州215006

出  处:《中国医学影像技术》2023年第10期1520-1525,共6页Chinese Journal of Medical Imaging Technology

摘  要:目的观察MR T1WI瘤体和瘤周影像组学联合临床特征预测新辅助化疗(NAC)疗效的价值。方法回顾性分析110例接受NAC的乳腺癌患者,其中43例NAC后病理完全缓解(pCR)、67例为非pCR(non-pCR);按7∶3比例将其分为训练集(n=76,30例pCR、46例non-pCR)和测试集(n=34,13例pCR、21例non-pCR)。以单因素及多因素logistic回归分析训练集临床及MRI表现,筛选NAC用于乳腺癌疗效的独立预测因子,并建立临床模型;于训练集NAC前MR T1WI所示瘤体及瘤周感兴趣体积(VOI)提取并筛选最佳影像组学特征,构建NAC治疗乳腺癌效果预测模型,包括模型_(瘤体)、模型瘤周及模型_(瘤体+瘤周);联合瘤体及瘤周影像组学及临床相关独立预测因子建立联合模型。采用受试者工作特征(ROC)曲线评估模型诊断效能。结果淋巴结转移(OR=0.17)、人表皮生长因子受体2(OR=4.52)及孕激素受体表达(OR=0.20)均为临床相关独立预测因子(P均<0.05)。于瘤体及瘤周VOI各选出4个最佳影像组学特征并构建相应模型。联合模型在训练集的AUC为0.91,高于临床模型、模型_(瘤体)、模型瘤周及模型_(瘤体+瘤周)(AUC分别为0.85、0.72、0.72、0.74,P均<0.05);其在测试集的AUC为0.88,高于模型_(瘤体)(AUC=0.64,P<0.05),与上述各模型的AUC(0.79、0.75、0.75)差异均无统计学意义(P均>0.05)。结论MR T1WI瘤周及瘤体影像组学联合临床特征可有效预测NAC治疗乳腺癌效果。Objective To investigate the value of MR T1WI intratumoral and peritumoral radiomics combined with clinical features for predicting effect of neoadjuvant chemotherapy(NAC)for breast cancer.Methods Data of 110 patients with breast cancer who underwent NAC were retrospectively analyzed,including 43 cases of pathological complete response(pCR)and 67 cases of non-pCR after NAC.The patients were divided into training set(n=76,30 cases of pCR and 46 cases of non-pCR)or testing set(n=34,13 cases of pCR and 21 cases of non-pCR)at the ratio of 7∶3.Univariate and multivariate logistic regression were used to analyze clinical and MRI findings of lesions in training set,and the independent predictors for effect of NAC were screened to establish clinical model.The best radiomics features based on MR T1WI intratumoral and peritumoral volume of interest(VOI)before NAC in training set were extracted and screened to construct predicting models,i.e.model_(tumor),model_(peritumor)and model_(tumor+peritumor).Then a combined model was established based on peritumoral and intratumoral radiomics combined with clinical features,and receiver operating characteristic(ROC)curves were drawn to evaluate the efficacy of the models.Results Lymph node metastasis(OR=0.17),human epidermal growth factor receptor-2(OR=4.52)and progesterone receptor expression(OR=0.20)were all clinically relevant independent predictors(all P<0.05).Based on each MR T1WI intratumoral and peritumoral VOI,4 best radiomics features were screened to construct models,respectively.AUC of the combined model in the training set was 0.91,higher than that of clinical model,model_(tumor),model_(peritumor)and model_(tumor+peritumor)(AUC=0.85,0.72,0.72,0.74,all P<0.05),in testing set was 0.88,higher than that of model_(tumor)(AUC=0.64,P<0.05)but was not significant different from that of the other models(0.79,0.75,0.75,all P>0.05).Conclusion MR T1WI intratumoral and peritumoral radiomics combined with clinical features could be used to effectively predict effect of NAC for breas

关 键 词:乳腺肿瘤 磁共振成像 影像组学 新辅助治疗 

分 类 号:R737.9[医药卫生—肿瘤] R445.2[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象