基于机器视觉的刹车盘表面缺陷检测技术研究  被引量:1

Research on Surface Defect Detection Technology of Brake Disc Based on Machine Vision

在线阅读下载全文

作  者:李峰[1] 邵世芬 LI Feng;SHAO Shifen(Haier School(Electromechanical School),Qingdao Technical College,Qingdao,Shandong 266555,China)

机构地区:[1]青岛职业技术学院海尔学院(机电学院),山东青岛266555

出  处:《青岛职业技术学院学报》2023年第4期42-48,共7页Journal of Qingdao Technical College

基  金:青岛职业技术学院西海岸新区高校校长基金专项资助项目(39100101);青岛职业技术学院重点研发专项项目(2022ZDYF02)。

摘  要:汽车刹车盘是汽车制动系统的关键部件之一,刹车盘在铸造过程中由于生产工艺、生产环境、人工操作等因素会导致刹车盘存在砂眼、气孔、缩孔、裂纹等多种表面缺陷,从而影响其使用寿命和驾乘安全。随着人工智能技术的发展,机器视觉技术因其鲁棒性强、效率高、致错率低等诸多优点,已被逐步应用于刹车盘表面缺陷检测工序中,刹车盘检测技术也逐步与整个生产过程各工序的设备连接和数据兼容,高集成化的工业控制模式正在实现。随着图像处理技术的进步,相机、工业机器人等硬件设施的不断完善,未来将会逐步实现刹车盘流水线自动检测和缺陷件自动筛选,这将有助于提升刹车盘的生产质量,最大程度地保证车辆及驾乘人员的安全。Automobile brake disc is one of the key components in the automobile brake system.During the casting process of brake discs,various surface defects such as blowholes,air holes,shrinkage holes,and cracks can occur in the finished brake disc products due to factors such as production technology,production environment,and manual operation,thereby affecting its service life and driving safety.With the development of artificial intelligence technology,machine vision technology has been gradually applied to the surface defect detection process of brake discs due to its strong robustness,high efficiency,low error rate,and many other advantages.Brake disc detection technology is also gradually connected and compatible with the equipment and data of various processes throughout the production process,and a highly integrated industrial control mode is being realized.With the advancement of image processing technology and the continuous improvement of hardware facilities such as cameras and industrial robots,automatic detection of brake disc assembly lines and automatic screening of defective parts will gradually be achieved in the future.This will help improve the production quality of brake discs and maximize the safety of vehicles and passengers.

关 键 词:汽车刹车盘 表面缺陷检测 机器视觉 

分 类 号:TH164[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象