检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:伍洪健 邓作杰[1] 章银萍 张金召 王小康 WU Hongjian;DENG Zuojie;ZHANG Yinping;ZHANG Jinzhao;WANG Xiaokang(College of Computer and Communication,Hunan Institute of Engineering,Xiangtan 411104,China)
机构地区:[1]湖南工程学院计算机与通信学院,湘潭411104
出 处:《湖南工程学院学报(自然科学版)》2023年第3期39-43,共5页Journal of Hunan Institute of Engineering(Natural Science Edition)
基 金:湖南省教育厅科研重点项目(21A0451).
摘 要:针对布匹瑕疵差异较大、分布不均匀等问题,在YOLOv3中引入SwinTransformerBlock模块,用自注意力机制专注于有效特征排除无效特征的干扰,解决瑕疵差异大、分布不均等问题.同时用可变形卷积v2替换普通卷积,增大网络的感受野和多尺度建模能力,更好地适应瑕疵的形状和位置变化,从而提高目标检测的准确性和鲁棒性.实验结果表明,改进后算法在mAP上比原算法提高了3.80%,在检测速度上下降了2.86帧每秒.Regarding the problem of large differences in fabric defects and uneven distribution,this paper solves the problem of large differences in defects and uneven distribution by introducing the SwinTrans-formerBlock module in YOLOv3.The self-attention mechanism focuses on effective feature exclusion of inval-id feature interference.At the same time,deformable convolution is used to replace ordinary convolution to in-crease the network’s receptive field and multi-scale modeling ability so as to better adapt to the shape and po-sition changes of defects,thereby improving the accuracy and robustness of object detection.Experimental re-sults show that the improved algorithm has increased by 3.80%in mAP compared to the original algorithm,and decreased by 2.86 frames in detection speed.
关 键 词:布匹瑕疵检测 目标检测 SwinTransformerBlock 可变形卷积v2
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.248.104