基于sCARS-PSO-SVM的土壤硒含量高光谱定量反演  被引量:1

Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM

在线阅读下载全文

作  者:谢鹏 王正海 肖蓓 曹海玲 黄意 苏文林 XIE Peng;WANG Zheng-hai;XIAO Bei;CAO Hai-ling;HUANG Yi;SU Wen-lin(School of Earth Sciences and Engineering,Sun Yat-sen University,Guangzhou 510275,China)

机构地区:[1]中山大学地球科学与工程学院,广东广州510275

出  处:《光谱学与光谱分析》2023年第11期3599-3606,共8页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(41572316);广州市科技计划项目(201804010274)资助。

摘  要:硒(Se)是人体必需的微量元素之一。人主要通过食用农产品来获取硒,而农产品中的硒主要来自土壤。因此,研究土壤中硒的含量和分布,对人体健康和农作物生产具有重要的意义。高光谱遥感技术的发展,使得高效、低成本、大范围估测土壤中硒的含量和分布成为可能。但是,土壤中硒的含量对光谱的敏感性较弱,严重影响了高光谱硒含量定量反演精度。该研究以广东连州地区富硒土壤为研究对象,系统采集研究区土壤样品50份,分析土壤样本硒含量,同步采集土壤反射光谱数据;利用Savitzky-Golay卷积平滑算法、多元散射校正(MSC)、对数一阶微分(lg(R)-FD)、标准正态变量校正(SNV)、多元散射校正一阶微分(MSC-FD)对原始光谱进行增强处理;应用稳定竞争自适应重加权采样(sCARS)算法结合皮尔逊相关性分析(PCC)进行特征波段选择;对比分析偏最小二乘(PLS)、支持向量机(SVM)和粒子群优化支持向量(PSO-SVM)模型土壤硒含量高光谱定量反演效果。结果表明:将sCARS算法应用于光谱增强后的回归模型,并结合皮尔逊相关性(PCC)选择与土壤硒含量敏感性较大的特征波段,不仅可以降低土壤硒含量高光谱预测模型复杂度并有效避免大量有用信息的损失,还能提高高光谱回归模型的反演效率;对比不同回归模型训练集和预测集的决定系数R^(2)和均方根误差RMSE,发现支持向量(SVM)模型比偏最小二乘(PLSR)模型预测效果更好,模型稳定性更高,且非线性模型更适用于土壤硒含量的预测;通过粒子群(PSO)算法优化SVM的核函数和正则化参数,SVM模型的反演精度和稳定性都有所提升;MSC-PSO-SVM模型(R^(2)=0.53、RMSE=0.34)和MSC-FD模型(R^(2)=0.50、RMSE=0.04)预测效果较为突出。综上所述:利用sCARS结合PSO-SVM算法建立土壤硒含量的高光谱定量反演模型,能够为土壤硒含量的高光谱大面积估测提供新的途径。Selenium(Se)is part of the essential trace elements in the human body.People obtain selenium mainly through the consumption of agricultural products,and selenium in agricultural products mainly comes from the soil.Therefore,studying the content and distribution of selenium in the soil is very important to human health and crop production.However,the development of hypersensitive remote sensing technology has made it possible to estimate the content and distribution of selenium in soil in an efficient,low-cost and large-scale manner.However,the sensitivity of soil selenium content of spectra is weak,which seriously affects the accuracy of quantitative inversion of hypersecretion selenium content.In this study,50 soil samples were systematically collected from the study area to analyse the selenium content of the soil samples,and the soil reflection spectral data were collected simultaneously;the Savitzky-Golay convolutional smoothing algorithm,multiple scattering corrections(MSC),first-order logarithmic differentiation(lg(R)-FD),standard normal variance correction(SNV),multiple scattering corrected first-order differentiation(MSC-FD)for raw spectra enhancement;application of the stable competitive adaptive benighted sampling(sCARS)algorithm combined with Pearson correlation analysis(PCC)for feature band selection;comparative analysis of partial least squares(PLS),support vector machine(SVM)and particle swarm optimisation support vector(PSO-SVM)models for the quantification of soil selenium content in hypersecretion The results showed that the sCARS algorithm was applied to the inversion.The results show that applying the sCARS algorithm to the spectrally enhanced regression model and combining Pearson correlation(PCC)to select the feature bands with greater sensitivity to soil selenium content can not only reduce the complexity of the hypersecretion prediction model for soil selenium content and effectively avoid the loss of a large amount of useful information,but also improve the inversion efficiency of the hype

关 键 词:高光谱 土壤Se含量 SCARS PSO-SVM 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象