深度伪造侵犯自然人肖像权的民事救济  

The Civil Remedyof“Deepforgery”Infringingon Natral Person’s Portratry Right

在线阅读下载全文

作  者:马文[1] 杨静怡 MA Wen;YANG Jingyi(College of Marine Culture and Law,Jimei University,Xiamen 361021,China)

机构地区:[1]集美大学海洋文化与法律学院,福建厦门361021

出  处:《河南工学院学报》2023年第5期70-75,共6页Journal of Henan Institute of Technology

基  金:福建省社科基金项目“《民法典》背景下数据权利的刑法保护”(FJ2021BF013);福建省高校哲学社会科学研究项目“人工智能在知识产权领域内的风险及其刑法防范”(JAS20147)。

摘  要:司法实践中,深度伪造技术给肖像权保护带来挑战,如认定侵权责任困难、被侵权人举证困难、我国现有的侵权赔偿制度不明确、对个人信息保护存在威胁等。结合我国现有立法关于深度伪造侵犯肖像权的规定,借鉴美国的《深度伪造责任法案》与欧盟的《通用数据保护条例》中的相关规定,提出保护自然人肖像权的民事救济途径,即完善侵权责任认定机制、增强被侵权人举证可操作性、健全侵权赔偿责任制度、加强网络平台的监管责任,以达到充分保护公民个人信息的目的。The development of big data and artificial intelligence provides new means and methods for infringers.The article first cited Zhao Zihan's case and found that the phenomenon of"deep forgery"technology infringing on natural person's portrait rights is widespread.Secondly,it briefly introduces the internal operation logic of"deep forgery"technology,and clarifies the challenges brought by the technology to the protection of portrait rights in judicial practice:the difficulty in identifying tort liability,the dilemma of the infringed to provide evidence,the existing tort compensation system in China is unclear,and the threat to the protection of personal information.Finally,combined with the provisions of China's existing legislation on the infringement of portrait rights by"deep forgery"and the relevant provisions in the United States'"Deep Forgery Liability Act"and the European Union's"General Data Protection Regulation",the civil remedies to protect natural persons'portrait rights are proposed.That is,to improve the identification mechanism of tort liability,enhance the operability of the victim's proof,improve the tort liability system,and strengthen the supervision responsibility of online platforms,so as to achieve the purpose of fully protecting citizens'personal information.

关 键 词:深度伪造 肖像权 侵权责任 民事救济 

分 类 号:D923[政治法律—民商法学] D922.16[政治法律—法学] TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象