基于迁移学习卷积神经网络的安全壳裂缝识别  被引量:3

Containment Crack Identification Based on Convolutional Neural Network with Transfer Learning

在线阅读下载全文

作  者:徐亚明[1] 虞剑 XU Yaming;YU Jian(School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China)

机构地区:[1]武汉大学测绘学院,湖北武汉430079

出  处:《测绘地理信息》2023年第5期65-68,共4页Journal of Geomatics

摘  要:针对安全壳裂缝识别问题,引入迁移学习方法来提高卷积神经网络模型的训练效率。分析了各预训练卷积神经网络模型在基于迁移学习的安全壳裂缝识别中的效果。分别利用在ImageNet上预训练好的AlexNet、VGGNet、In⁃ception V3模型进行迁移学习,并用小样本数据集对这3种模型进行重新训练。结果表明,与重新训练的模型相比,迁移学习在减少了训练时间的同时还提升了分类任务的性能,其中,利用Inception V3预训练的权重参数进行迁移学习时表现最好,准确率可达97.16%。To solve the problem of containment crack identification,transfer learning method is introduced to improve the training efficiency of convolutional neural network model.We analyze the effect of each pre-trained convolution neural network model in containment crack detection based on transfer learning.AlexNet,VGGNet and Inception V3 models pretrained on ImageNet are used for transfer learning,then small sample data sets are used to retrain these three models.The results show that,compared to the retraining model,transfer learning reduces training time and improves the performance of classification tasks.Among them,transfer learning performs best when using the weight parameters pre-trained by Inception V3,with an accuracy of 97.16%.

关 键 词:迁移学习 安全壳裂缝识别 Inception V3 卷积神经网络 

分 类 号:P237[天文地球—摄影测量与遥感] TL364[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象