节律自适应的运动想象脑电空域特征提取方法  

Rhythm adaption method for extracting spatial features of MI-EEG

在线阅读下载全文

作  者:吴叶兰[1] 张跃 曹璞刚 廉小亲[1] 于重重[1] WU Yelan;ZHANG Yue;CAO Pugang;LIAN Xiaoqin;YU Chongchong(School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China)

机构地区:[1]北京工商大学人工智能学院,北京100048

出  处:《中国医学物理学杂志》2023年第10期1270-1277,共8页Chinese Journal of Medical Physics

基  金:国家重点研发计划(2018YFC0807903)。

摘  要:目的:针对运动想象脑电(MI-EEG)信号个体差异性大,特征质量依赖频带的选择,导致多类MI-EEG信号识别效果差的问题,提出节律自适应的空域特征提取方法。方法:用滤波器组共空间模式(FBCSP)提取多个频带的空域特征,结合免疫粒子群优化算法,对特征提取过程中的频、空参数寻优,实现节律、空域特征提取参数的自适应调整,获取最优节律下的FBCSP空域特征,提升多类MI-EEG信号的识别准确率。结果:本文方法在BCI-Ⅳ Dataset 2a、BCI-ⅢDataset 3a数据集上取得85.49%的平均准确率,较原始FBCSP方法提升10.84%。结论:本文方法更好地获取了脑电空域特征,能有效提高分类正确率,为MI-EEG分类提供了新的解决思路。Objective To propose a method for spatial feature extraction based on rhythm adaption for addressing the problem of poor recognition of multi-class motor imagery electroencephalogram(MI-EEG)caused by the individual differences in MI-EEG and the dependence of feature quality on frequency band selection.Methods The spatial features under different frequency bands were extracted with filter bank common spatial pattern(FBCSP).The immune particle swarm optimization algorithm was used to optimize the frequency band and spatial feature extraction parameters in feature extraction for realizing the adaptive adjustment of the rhythm and spatial parameters and obtaining the FBCSP spatial features under the optimal rhythm,thereby improving the recognition accuracy of multi-class MI-EEG.Results The proposed method had an average accuracy of 85.49%on BCI-IV Dataset 2a and BCI-ⅢDataset 3a,which was 10.84%higher than the original FBCSP method.Conclusion The proposed method is advantageous in EEG feature extraction and can effectively improve classification accuracy,providing a new solution for MI-EEG classification.

关 键 词:运动想象脑电信号 特征提取 滤波器组共空间模式 免疫粒子群优化 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象