检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱德钧[1] Qiu Dejun(School of Philosophy and Sociology,Lanzhou University Lanzhou 730000,China)
机构地区:[1]兰州大学哲学社会学院
出 处:《科学.经济.社会》2023年第3期27-39,共13页Science Economy Society
基 金:国家社会科学基金“人工智能中关于因果关系的归纳模型研究”(20BZX107)。
摘 要:基于图宾根基准在多学科的因果测试,建立了不同于该基准的两个变量的因果关系对(人文社会科学)因果关系数据库;在此基础上分析了LLM在新的基准下因果发现中的能力和问题;探讨了在因果估计阶段,系统在数据或条件不充分下的因果推理能力。期望LLM以一种新的、友好的因果研究范式与传统方法结合,为我们日常处理因果问题提供全新的助力。Based on the Tubingen benchmark for causal testing in multiple disciplines,we built a causal database of causal pairs(humanities and social sciences)for two variables different from the benchmark;on this basis,we analyzed the capabilities and problems of LLM in causal discovery under the new benchmark;and then explored the capabilities of the system for causal inference under insufficient data or conditions in the causal estimation stage.It is expected that LLM provide a new boost to our daily treatment of causal problems with a new and friendly causal research paradigm combined with traditional methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28