检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺宇哲 徐光美 何宁 于海港 张人 晏康 HE Yuzhe;XU Guangmei;HE Ning;YU Haigang;ZHANG Ren;YAN Kang(Beijing Key Laboratory of Information Service Engineering,Beijing Union University,Beijing 100101,China;College of Smart City,Beijing Union University,Beijing 100101,China)
机构地区:[1]北京联合大学北京市信息服务工程重点实验室,北京100101 [2]北京联合大学智慧城市学院,北京100101
出 处:《计算机工程与应用》2023年第21期214-221,共8页Computer Engineering and Applications
基 金:国家自然科学基金(61872042,62172045);北京市教委科技计划重点项目(KZ201911417048);北京联合大学人才强校优选计划(BPHR2020AZ01,BPHR2020EZ01);国家重点研发计划(2018AAA0100804)。
摘 要:行人检测是利用计算机视觉技术判断图像或者视频序列中是否存在行人并给予精确定位。针对行人检测在密集场景下普遍存在的行人间遮挡问题,提出基于迭代Faster R-CNN的密集行人检测模型,利用一种IterDet迭代方案对Faster R-CNN进行改进,有效解决非极大值抑制(NMS)算法及其改进在选择精确度和召回率之间平衡点的难题。同时利用递归金字塔结构(RFP)进一步增强模型提取特征能力。在具有挑战性的WiderPerson和CrowdHuman数据集上进行训练和验证,实验结果表明,该模型相比Faster R-CNN在精度和召回率显著提升的同时,漏检率也明显降低。尤其在WiderPerson数据集上召回率、精度、漏检率等性能指标分别达到了97.65%、91.29%、40.43%的SOTA结果。Pedestrian detection uses computer vision technology to determine whether there are pedestrians in the image or video sequence and give accurate positioning.In this paper,a dense pedestrian detection model based on iterative Faster R-CNN is proposed to solve the common pedestrian occlusion problem in dense scenes.An IterDet iteration scheme is used to improve Faster R-CNN,which effectively solves the problem of choosing a balance between precision and recall for the NMS and its improvement.At the same time,the recursive pyramid structure is used to further enhance the feature extraction ability of the model.This paper trains and validates on the challenging WiderPerson and Crowd-Human datasets.The experimental results show that compared with Faster R-CNN,the model in this paper significantly improves the precision and recall,but also significantly reduces the mMR.Especially on the WiderPerson dataset,the recall,precision,and mMR has reached SOTA results of 97.65%,91.29%,and 40.43%,respectively.
关 键 词:行人检测 密集场景 遮挡问题 Faster R-CNN 迭代方案
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.231