检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张楷
机构地区:[1]华北电力大学,北京102206
出 处:《科技创新与应用》2023年第31期84-88,共5页Technology Innovation and Application
摘 要:近年来,基于模式识别的方法已大量应用于燃气轮机气路故障诊断,并取得一定效果。然而其故障识别准确率常局限于单一工况。为解决基于模式识别的气路故障诊断方案在多种工况下的故障识别准确率低下的问题,该文建立基于深度学习和条件对抗域自适应的模型,用于提取跨工况不变特征,进而提升模型对工况差异干扰的抗性,并保障模型在多种工况下的气路故障识别准确率。此外,该文设计多种跨工况故障诊断任务来验证所提出方案的有效性。In recent years,the method based on pattern recognition has been widely used in gas turbine gas path fault diagnosis,and achieved certain results.However,the accuracy of fault identification is often limited to a single working condition.In order to solve the problem of low fault recognition accuracy of the gas path fault diagnosis scheme based on pattern recognition under various working conditions,this paper establishes a model based on deep learning and condition adaptive resistance domain,which is used to extract invariant features across working conditions,improve the resistance of the model to the interference of working conditions,and ensure the gas fault recognition accuracy of the model under various operating conditions.In addition,a variety of cross-mode fault diagnosis tasks are designed to verify the effectiveness of the proposed scheme.
关 键 词:燃气轮机 模式识别 深度学习 条件对抗域自适应 跨工况 气路故障诊断
分 类 号:TM621.3[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.72.114