检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡贤杰 丁德锐[1] 魏国亮 武俊珂 CAI Xianjie;DING Derui;WEI Guoliang;WU Junke(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093 [2]上海理工大学管理学院,上海200093 [3]上海理工大学理学院,上海200093
出 处:《上海理工大学学报》2023年第5期477-487,共11页Journal of University of Shanghai For Science and Technology
基 金:国家自然科学基金资助项目(61973219)。
摘 要:计算机辅助检测工具可以帮助医生减少在临床检查中漏检误检的情况,从而提高诊断准确度,同时减轻医生的劳动强度。针对超声胃肠镜检查中黏膜下肿瘤的定位与分类问题,提出了一种融合多尺度特征和子空间注意力的黏膜下肿瘤检测算法(MFSA-YOLOv7t)。首先,移除小目标预测头,在保证精度下使网络轻量化;然后,基于浅层特征提出多尺度特征融合模块,提取肿瘤细节信息;其次,改进上采样结构,在保留上层信息的同时增强感受野;最后,引入子空间位置注意力模块,捕获肿瘤的位置和边界特征,进一步提升黏膜下肿瘤的检测性能。实验表明,MFSA-YOLOv7t在平均精度均值、敏感度以及准确度上分别达到97.32%,96.99%和96.24%,相比YOLOv7-tiny算法检测性能有较大的提升,分别提高了2.39%,2.75%和2.59%。MFSA-YOLOv7t为医生在临床检查中的辅助诊断提供更加可靠的肿瘤类型参考,同时为黏膜下肿瘤的检测提供了一个新的思路和研究方向。Computer-aided detection tools can help doctors reduce the situations of missed and false detections in clinical examinations to improve diagnostic accuracy and reduce the labor intensity of doctors.Aiming at the problem of the localization and identification of submucosal tumors in ultrasound gastroscopy,a submucosal tumor detection algorithm combined with multi-scale feature and subspace attention(MFSA-YOLOv7t)was proposed.Firstly,the small target prediction head was removed to make the network lightweight while maintaining accuracy.Secondly,A multi-scale feature fusion module was proposed based on shallow features to aggregate details.Then,the algorithm improved the up-sampling structure to retain the upper layer information to the greatest extent and enhance the feature perception field.Finally,the coordinate subspace attention module was introduced to capture tumor location and boundary features to improve the detection performance of submucosal tumors.Experiments show that the mAP,sensitivity,and accuracy of MFSA-YOLOv7t reach 97.32%,96.99%,and 96.24%,respectively,compared with YOLOv7-tiny,MFSA-YOLOv7t has a great improvement in detection performance,which is improved by 2.39%,2.75%,and 2.59%,respectively.MFSA-YOLOv7t provides a more reliable reference of tumor type for doctors in clinical examination of the auxiliary diagnosis and also provides a new idea and a research direction for detecting submucosal tumors.
关 键 词:黏膜下肿瘤 计算机辅助检测 多尺度特征 上采样 子空间注意力
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.132.108