检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂浩巍 李志强 Nie Haowei;Li Zhiqiang(College of Mathematics and Physics,Beijing University of Chemical Technology,Beijing 100029,China)
出 处:《统计与决策》2023年第21期34-39,共6页Statistics & Decision
摘 要:计算机内存限制和分位数回归损失函数的不光滑性,对海量数据下分位数回归的研究提出了挑战。文章将聚合估计方程与核卷积光滑方法相结合,提出了一种在分布式环境下基于估计方程的光滑分位数的回归聚合估计算法(DSCQR)。理论研究表明,在分块数K满足一定条件时,聚合估计量与全样本估计量具有相同的渐近性质。模拟和实证研究结果表明,所提方法和已有研究提出的DCQR方法相比,在计算速度上具有显著优越性,且在K满足一定条件时具有相当的稳健性。Computer memory limitations and the non-smoothness of quantile regression loss function pose challenges to the research of quantile regression under massive data.This paper combines the aggregation estimation equation with the convolu-tion-based kernel smoothing method and proposes an aggregate estimation algorithm of smoothing quantile regression based on es-timation equations in a distributed environment(DSCQR).Theoretical research shows that when the block number K satisfies cer-tain conditions,the aggregate estimator and the full sample estimator have the same asymptotic properties.The simulation and em-pirical study results demonstrate that the proposed method has obvious advantages in computation speed compared with the DCQR method proposed in previous studies,and also has considerable robustness when K meets certain conditions.
分 类 号:O212.7[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7