基于地基气辉图像的大气重力波目标识别  

Object Recognition of Atmospheric Gravity Wave Based on Foundation Airglow Images

在线阅读下载全文

作  者:陈锦生 马文臻 方少峰 邹自明 CHEN Jinsheng;MA Wenzhen;FANG Shaofeng;ZOU Ziming(Space Science Mission Operation Center,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院国家空间科学中心空间科学卫星运控部,北京100190 [2]中国科学院大学计算机科学与技术学院,北京100049

出  处:《计算机工程》2023年第11期13-23,共11页Computer Engineering

基  金:国家重点研发计划(2022YFF0711400);中国科学院网信专项(CAS-WX2021PY-0101)。

摘  要:子午工程全天空气辉成像仪观测网的逐步完善,积累了海量的气辉图像原始观测数据,但是基于地基气辉观测的大气重力波研究极度依赖人工识别,十分耗时且识别质量难以得到保证,亟需发展一种快速有效的自动识别方法。针对大气重力波标注样本稀缺的问题,在改进Cycle GAN模型的基础上提出一种大气重力波气辉观测数据集扩充算法,仅需标注少量样本即可大幅提升检测算法对大气重力波的识别精度;进一步,利用地基气辉图像识别目标与背景低信噪比的特点,通过对深度学习模型YOLOv5s骨干网络以及边界框预测加以改进,提出一种新的大气重力波智能识别算法。实验结果表明,使用扩增的数据集以及改进的YOLOv5s目标检测算法,在交并比阈值为0.5的情况下平均识别精度达到75.8%,较原始模型提升9.7个百分点,检测速度和平均识别精度均优于对比的主流目标检测算法。With the construction of the Meridian Project all-sky airglow imager observation network,a large amount of raw airglow image data has been accumulated.The current atmospheric gravity wave research based on airglow observation is extremely dependent on manual identification,which is very time-consuming,and the quality of labeling is difficult to guarantee.Therefore,there is an urgent need for a fast and effective automatic identification method.To solve the problem of sparsely labeled samples of atmospheric gravity waves,this paper proposes an algorithm based on the improved Cycle GAN model to expand the atmospheric gravity wave airglow observation dataset,thereby greatly improving the recognition accuracy of atmospheric gravity waves by labeling only a small number of samples.A new intelligent recognition algorithm for atmospheric gravity waves is also proposed by improving the YOLOv5s model backbone network and bounding box prediction,considering the characteristics of low Signal-to-Noise Ratio(SNR)between the recognition target and background in airglow images.The experimental results showed that using the augmented dataset and improved YOLOv5s target detection algorithm,the average precision reached 75.8%under an Intersection-over-Union(IoU)threshold of 0.5,which is 9.7 percentage points higher than that of the original model.Meanwhile,the detection speed and average recognition accuracy are superior to mainstream target detection algorithms compared.

关 键 词:重力波 深度学习 数据扩充 目标检测 生成对抗网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象