检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑志伟 管雪元[1] 傅健[2] 马训穷 尹上 ZHENG Zhiwei;GUAN Xueyuan;FU Jian;MA Xunqiong;YIN Shang(National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;Shanghai Aerospace Electronic Technology Institute,Shanghai 201108,China)
机构地区:[1]南京理工大学瞬态物理国家重点实验室,江苏南京210094 [2]南京理工大学能源与动力工程学院,江苏南京210094 [3]上海航天电子技术研究所,上海201108
出 处:《兵工学报》2023年第10期2975-2983,共9页Acta Armamentarii
基 金:国家自然科学基金项目(61603191、61603189)。
摘 要:针对弹丸非线性轨迹预测问题,提出一种基于卷积神经网络(CNN)与长短期记忆(LSTM)神经网络的混合轨迹预测模型。通过建立6自由度弹丸运动模型,并使用4阶龙格库塔法外弹道仿真,得到大量轨迹数据样本;提出CNN-LSTM神经网络的混合轨迹预测模型,并利用滑动窗口法和差分法构造输入输出的轨迹数据对,将预测问题转化为有监督的学习问题;将所提模型与LSTM神经网络模型、门控循环单元(GRU)神经网络模型和反向传播(BP)神经网络模型在同一数据集下进行仿真实验。研究结果表明,CNN-LSTM神经网络模型预测3 s后的平均累积预测误差在x轴方向约为14.83 m,y轴方向约为20.77 m,z轴方向约为0.75 m,且轨迹预测精度优于单一模型,为弹丸轨迹预测研究提供了一定的参考。To solve the problem of nonlinear trajectory prediction of projectile,a novel hybrid trajectory prediction model based on convolutional neural network(CNN)and long and short-term memory(LSTM)neural network is proposed.A 6DOF projectile movement model is established,and a substantial dataset of trajectory samples is obtained through exterior ballistics simulations employing the four-order Runge-Kutta method.Secondly,the hybrid CNN-LSTM trajectory prediction model is proposed,and the input and output trajectory data pairs are constructed by using the sliding window method and first-order difference method,which transforms the prediction problem into a supervised learning problem.Then,the proposed model is compared with LSTM neural network model,gated recurrent unit(GRU)neural network model and back propagation(BP)neural network model using the same dataset.The results show that the average cumulative prediction error of CNN-LSTM model after 3 s is about 14.83 m in the x-axis direction,20.77 m in the y-axis direction and 0.75 m in the z-axis direction.The trajectory prediction accuracy of CNN-LSTM neural network model is better than that of a single model,which provides valuable insights for advancing projectile trajectory prediction research.
关 键 词:弹道模型 深度学习 监督学习 卷积神经网络与长短期记忆神经网络模型 轨迹预测
分 类 号:TJ012.3[兵器科学与技术—兵器发射理论与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.135.179