检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏剑峰 张发平[1] 卢继平[1] 杨向飞 杨鹏楷 WEI Jianfeng;ZHANG Faping;LU Jiping;YANG Xiangfei;YANG Pengkai(School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China;School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]北京理工大学机械与车辆学院,北京100081 [2]北京理工大学计算机学院,北京100081
出 处:《兵工学报》2023年第10期3101-3114,共14页Acta Armamentarii
摘 要:针对变工况作战环境下火炮反后坐装置状态信号的模糊性和高冲突性等特点所导致的故障诊断可信性不高的问题,提出一种基于高斯模型和均方根偏移(RMSD)-Dempster-Shafer(DS)故障诊断方法,实现信号的模糊化定量表征以及高度冲突证据融合的高可信性诊断。采用高斯模型求解火炮反后坐装置的多个故障特性信号所对应证据的基本概率分配,实现对信号模糊性的定量表征处理;通过构造RMSD-DS冲突系数求解证据间相似度,依据相似度定义各证据重要度,实现每个证据在融合过程中重要程度的定量描述;提出依靠证据重要度的权重求解及证据融合方法,实现高度冲突证据的可靠融合。仿真试验数据应用表明,所提方法相较于其他代表性方法具有更高的准确性和鲁棒性。To deal with the problem of low reliability of fault diagnosis caused by the ambiguity and high conflict of the state signal of the anti-recoil device of the gun under variable operating conditions,a fault diagnosis method based on the Gaussian model and RMSD(Root Mean Square Deviation)-DS(Dempster-Shafer)is proposed to realize the quantitative characterization of signal fuzziness and the high reliability diagnosis of high-conflict evidence fusion.This method uses the Gaussian model to solve the basic probability assignment of the evidence corresponding to multiple fault feature signals of the anti-recoil device,thus realizing the quantitative characterization of the signal ambiguity.By constructing the RMSD-DS conflict coefficient to solve the similarity between evidences,the importance of each evidence is defined according to the similarity,and the quantitative description of the importance of each evidence in the fusion process is realized.The weight solution and evidence fusion method based on the importance of evidence are put forward to realize the reliable fusion of highly conflicting evidence.The application of simulation test data shows that the proposed method has higher accuracy and robustness than other representative methods.
分 类 号:E924[军事—军事装备学] TJ303.4[兵器科学与技术—武器系统与运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.60.252