正面碰撞中驾驶员头部伤情预测  

Prediction of Driver Head Injury in Frontal Collision

在线阅读下载全文

作  者:代娇 DAI Jiao(Venicle Engineering Institute,Chongqing University of Technology,Chongqing 400054,China)

机构地区:[1]重庆理工大学车辆工程学院,重庆400054

出  处:《汽车实用技术》2023年第21期94-101,共8页Automobile Applied Technology

摘  要:为了快速预测道路交通事故中乘员的头部损伤风险,求解乘员损伤与影响因素之间的关系,构建一种基于改进鲸鱼算法优化反向传播(MWOA-BP)神经网络的驾驶员侧损伤预测模型。选用微型面包车为研究车型,研究工况为正面碰撞,构建以车辆碰撞初速度、安全带使用情况、安全气囊展开情况为输入,以驾驶员的头部简明伤害等级(AIS)为预测目标的损伤预测模型。训练MWOA-BP预测模型,并与传统的反向传播(BP)神经网络模型进行对比损伤预测效果。结果表明,MWOA-BP预测模型有良好的测试效果,其测试准确率达到90%。结合真实事故,将损伤预测模型进行应用,证明该损伤预测模型可以应用到实际事故中。In order to quickly predict the risk of head injury of occupants in road traffic accidents and solve the relationship between occupant injury and influencing factors,construct a driver-side injury prediction model based on modified whale optimization algorithm-back propagation(MWOA-BP)neural network.Select the minivan as the research model,the study condition is in frontal collision,and construct the injury prediction model which selects the initial velocity of the vehicle collision,seat belt use,and airbag deployment as inputs,and the driver's head abbreviated injury scale(AIS)as the prediction target.The MWOA-BP prediction model is trained,and the damage prediction effect is compared with the traditional back propagation(BP)neural network model.The results show that the MWOA-BP prediction model has good test effect,and the test accuracy is up to 90%.Combined with real accidents,the damage prediction model is applied to prove that the damage prediction model can be applied to actual accidents.

关 键 词:微型面包车 正面碰撞 BP神经网络 MWOA 损伤预测 

分 类 号:U461.91[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象