检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:代鸿 刘新宇 DAI Hong;LIU Xinyu(College of Humanities,Chongqing Metropolitan College of Science and Technology,Chongqing 402160,China;School of Mechanical and Electrical Engineering,Chengdu University of Technology,Chengdu 610059,China)
机构地区:[1]重庆城市科技学院人文学院,重庆402160 [2]成都理工大学机电工程学院,成都610059
出 处:《轴承》2023年第11期87-94,共8页Bearing
摘 要:针对轴承微弱故障稀疏振动信号的特征提取,提出了基于模型数据协同链接框架的端到端深度网络稀疏去噪(DNSD)策略。建立了全局可微稀疏模型,引入深度神经网络学习超参数,基于轴承内圈故障机理建立了多模式数据集模拟故障信号,通过DNSD对数据集以去噪自编码器的形式进行训练,重建损失并更新网络和稀疏理论的参数,通过轴承内圈故障的仿真和试验验证了DNSD模型在轴承微弱故障特征提取方面的优越性和鲁棒性。Aimed at feature extraction of sparse vibration signals from bearing weak faults,an end-to-end deep network sparse denoising(DNSD)strategy is proposed based on model data collaborative link framework.A global differentiable sparse model is established,and a deep neural network is introduced to learn hyperparameters.Based on mechanism of bearing inner ring fault,a multi-mode dataset is established to simulate the fault signal.The dataset is trained by DNSD in the form of denoising autoencoder to reconstruct the loss and update the parameters of network and sparse theory.The superiority and robustness of DNSD model in bearing weak fault feature extraction are verified by simulation and experiment of bearing inner ring fault.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.210.224