检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李文正 张稳桥 曾晓松 LI Wenzheng;ZHANG Wenqiao;ZENG Xiaosong
机构地区:[1]贵州航天林泉电机有限公司,贵州贵阳550081
出 处:《现代机械》2023年第5期87-92,共6页Modern Machinery
摘 要:在以往采用粒子群算法优化控制系统参数过程中,评价函数是考虑粒子群算法整定的控制效果是否符合系统要求的重要依据,并没有考虑算法整定参数所耗费的时间。文中分别对推进电机静态负荷和动态负荷仿真模型采用粒子群算法整定控制参数,通过两种情况下迭代次数中调节时间的变化以及在静态负荷下优化的控制参数代入动态负荷的推进电机仿真模型获得的转速曲线对比分析可知,采用静态负荷的推进电机仿真模型相比推进电机动态负荷模型使用粒子群算法优化控制参数,其仿真效果基本一致,算法运行的仿真时间提升了50%;为后续采用粒子群优化控制模型提供了一种新的思路,即根据使用者的实际需求可以将仿真模型中的部分次要模型简化为静态参数,在不影响仿真结果的基础上降低仿真响应时间,提高仿真效率。In the past,in the process of using the particle swarm algorithm to optimize the parameters of the control system,the evaluation function considers whether the control parameters set by the particle swarm algorithm meet the requirements of the system,and does not consider the time it takes for the algorithm to tune the parameters.In this paper,the particle swarm algorithm is used to adjust the control parameters for the static load and dynamic load simulation models of the propulsion motor,and the speed curve obtained by the change of the adjustment time in the number of iterations in the two cases and the substitution of the control parameters optimized under the static load into the dynamic load of the propulsion motor simulation model show that the simulation effect of the static load model and the dynamic load model is basically the same.The simulation time of the algorithm operation has increased by 50%.This study has provided a new idea for the optimization of the control model by particle swarm algorithm,that is,according to the actual needs of users,some secondary models in the simulation model can be simplified to static parameters,which can reduce the simulation response time and improve the simulation efficiency without affecting the simulation results.
分 类 号:TM343[电气工程—电机] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.72