基于PINN的变截面压电半导体纤维力学特性研究  

Investigation on Mechanical Properties of Piezoelectric Fiber with Variable Cross-Section Based on PINN

在线阅读下载全文

作  者:吴文锐 房凯 李鹏[1] 钱征华[1,2] WU Wenrui;FANG Kai;LI Peng;QIAN Zhenghua(National Key Laboratory of Aerospace Structural Mechanics and Control,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;National Key Laboratory of Helicopter Dynamics,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)

机构地区:[1]南京航空航天大学航空学院,航空航天结构力学及控制全国重点实验室,江苏南京210016 [2]南京航空航天大学航空学院,直升机动力学全国重点实验室,江苏南京210016

出  处:《压电与声光》2023年第5期686-693,共8页Piezoelectrics & Acoustooptics

基  金:国家自然科学基金(12172171,11972276,12061131013);中央高校基本科研业务费(NS2022011);航空航天结构力学及控制全国重点实验室自主研究课题(MCMS-I-0522G01);江苏省自然科学基金(BK20211176);江苏省双创计划(JSSCBS20210166)。

摘  要:为了研究任意截面形状的压电半导体纤维的力学特性,提出了基于物理信息的神经网络模型,应用深度学习算法求解复杂的变系数偏微分方程。以变截面压电半导体纤维的静态拉伸为例,构造深度神经网络作为试函数,将其代入控制方程形成残差,并作为机器学习的加权损失函数,进而通过深度机器学习技术逼近数值解。研究结果表明:该方法具有广泛适用性,能够求解任意截面形状压电半导体材料的线性和非线性方程。In order to investigate the mechanical properties of non-uniform piezoelectric semiconductor(PS) fiber,the physics-informed neural network model(PINN) is proposed in this paper,and a deep learning algorithm is applied to solve the partial differential equations with variable coefficients.Taking the static extension of PS fiber with variable cross-section as an example,a deep neural network is firstly established as a trial function,and then substituted into the governing equations of PS to form a residual and used as the weighted loss function for the machine learning.Then,the numerical solution is approximated through the deep machined learning.The research results indicate that the presented method has wide applicability,and can be used to solve the linear and non-linear governing equations of PS materials with arbitrary cross-section.

关 键 词:压电材料 神经网络 深度学习 电势 半导体结 

分 类 号:TN384[电子电信—物理电子学] TN304.9

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象