检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方志耕[1] 陈静邑 张靖如 夏悦馨 熊仪 华晨晨 FANG Zhi-geng;CHEN Jing-yi;ZHANG Jing-ru;XIA Yue-xin;XIONG Yi;HUA Chen-chen(College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
机构地区:[1]南京航空航天大学经济与管理学院,江苏南京210016
出 处:《系统工程》2023年第5期151-158,共8页Systems Engineering
基 金:国家自然科学基金资助项目(72071111)。
摘 要:复杂体系的自学习是其智能性、复杂性和自适应性的核心驱动因素,然而目前学术界对其自学习机制的深入解析却比较少见。本文设计了一种基于智能体(agent)技术的GERT网络Bayes“互动-模仿”学习机制。首先根据节点逻辑关系构建复杂体系过程A-GERT网络,再结合Bayes理论进行网络节点传递概率自学习,进而搭建起“互动-模仿”学习机制模型。最后以新兴产业技术突破体系为研究对象进行分析,结果表明,在目标效益驱动下,通过Bayes自学习传递概率能产生相应的动态变化,凸’显技术突破关键路径,为企业决策产业技术突破方案提供建议。Self-learning of complex system of systems is the core driving factor of its intelligence,complexity and adaptability.However,the in-depth analysis of its self-learning mechanism in academia is relatively rare.A Bayesian“interaction-imitation”learning mechanism of GERT network based on agent technology is designed.Firstly,the complex system of systems process A-GERT network is constructed according to the logic of nodes,and then the self-learning of node transmission probability is carried out by combining Bayes theory,and then the“interaction-imitation”learning mechanism model is built.Finally,taking the emerging industry technology breakthrough system as the research object,the results show that driven by the target benefit,the Bayes self-learning transfer probability will produce corresponding dynamic changes,highlight the key path of technology breakthrough,and provide suggestions for enterprises to make decisions on industrial technology breakthrough schemes.
关 键 词:复杂体系 GERT网络 智能体技术 BAYES 自学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.28.162