检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘宁 柴天佑 LIU Ning;CHAI Tian-You(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819;National Engineering Research Center of Metallurgy Automation,Shenyang 110819)
机构地区:[1]东北大学流程工业综合自动化国家重点实验室,沈阳110819 [2]国家冶金自动化工程技术研究中心,沈阳110819
出 处:《自动化学报》2023年第11期2272-2285,共14页Acta Automatica Sinica
基 金:2020年度辽宁省科技重大专项计划(2020JH1/10100008);国家自然科学基金重大项目(61991404,61991400);中央高校基本科研业务费(N2224004-01);一体化过程控制学科创新引智基地2.0(B08015)资助。
摘 要:针对存在临界点的A类被控对象及不存在临界点的B类被控对象,分别采用其-180?和-120?相位点的频率和增益提出了PID (Proportional-integral-derivative)控制器参数的优化整定方法.基于Tchebyshev多项式和分数阶积分器求取被控对象-180?或-120?相位点的频率和增益,建立其积分滞后模型.采用负载扰动下跟踪误差平方和(Sum of squares of tracking errors, SSE)最小作为优化指标,使闭环系统具有强的鲁棒性的最大灵敏度和最大补灵敏度为约束方程,针对两类被控对象,分别建立了基于-180?和-120?相位点频率和增益的PID控制器比例、积分与微分三个参数的优化整定规则.通过与其他常用PID控制方法的仿真与物理对比实验,表明所提方法的优越性.In this paper,a tuning method of PID(proportional-integral-derivative)controller parameters is proposed for class A controlled object with critical point and class B controlled object without critical point using the frequency and gain of the point at which its phase is$-180^\circ$and$-120^\circ$respectively.The frequency and gain of the controlled object at which its phase is$-180^\circ$or$-120^\circ$are obtained based on Tchebyshev polynomial and fractional order integrator,and the gain-integrator-delay model is established for the controlled object.Taking the minimum sum of squares of tracking error(SSE)under load disturbance as the optimization objective,and the maximum sensitivity and maximum complementary sensitivity as the constraint equations that give the closed-loop system strong robustness,a tuning rule of the proportion,integral and differential parameters of PID controller is established for two classes of plants based on the frequency and gain at which the phase is$-180^\circ$and$-120^\circ$respectively.Through simulation and physical comparison experiments with other common PID control methods,the superiority of the proposed method is demonstrated.
关 键 词:PID控制 Tchebyshev多项式 积分滞后模型 跟踪误差平方和 优化整定规则
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.100.204