检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王海英 符祖峰 高景利[1] 虎大力 WANG Haiying;FU Zufeng;GAO Jingli;HU Dali(School of Mathematics and Statistics,Nanyang Normal University,Nanyang 473061,China)
机构地区:[1]南阳师范学院数学与统计学院,河南南阳473061
出 处:《南阳师范学院学报》2023年第6期22-28,共7页Journal of Nanyang Normal University
基 金:国家自然科学基金项目(61801250);南阳师范学院校级自然科学类科研项目(2022ZX022,2022QN014)。
摘 要:建立了E-预不变凸函数的Hermite-Hadamard型积分不等式。首先,利用分部积分法和变量代换,建立了E-预不变凸函数的Hermite-Hadamard型积分不等式。其次,利用Holder不等式、幂平均不等式和函数的E-预不变凸性,对获得的此类广义凸函数的Hermite-Hadamard型积分不等式的左右两边的不等式分别给出估计值。接着,利用多元E-预不变凸函数与单变量凸函数之间的关系,将建立的Hermite-Hadamard型不等式结果进行推广,得到了多元E-预不变凸函数的两个Hermite-Hadamard型积分不等式。最后,给出了E-预不变凸函数的Hermite-Hadamard型积分不等式在一些特殊均值上的应用。In this paper,the Hermite-Hadamard type inequality for E-preinvex functions is established.Firstly,the Hermite-Hadamard type integral inequalities for E-preinvex functions are established by using the partial integration method and variable substitution.Secondly,the estimates of the left and right sides of the Hermite-Hamard type integral inequalities for such generalized convex functions are presented respectively using the Holder inequality,the power mean inequality and the E-preinvexity.And then,by using the relationship between multivariate E-preinvex functions and univariate convex functions,two results of the Hermite-Hadamard type inequality for functions with several variables are obtained.Finally,some applications of the Hermite-Hadamard type inequality to special means are also provided.
关 键 词:E-预不变凸函数 Hermite-Hadamard型积分不等式 HOLDER不等式 幂平均不等式
分 类 号:O221.1[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7