基于Kalman滤波的GB-InSAR时序处理方法  被引量:1

GB-InSAR Time Series Processing Method Based on Kalman Filter

在线阅读下载全文

作  者:杨红磊[1,2] 杜家宽 刘友奉 韩建锋 YANG Hongei;DU Jiakuan;LIU Youfeng;HAN Jianfeng(School of Land Science and Technology,China University of Geosciences(Beijing),Beijing 100083,China;Beijing Key Laboratory of Urban Spatial Information Engineering,Beijing 100038,China;Beijing Institute of Geological Hazard Prevention,Beijing 100120,China)

机构地区:[1]中国地质大学(北京)土地科学技术学院,北京100083 [2]城市空间信息工程北京市重点实验室,北京100038 [3]北京市地质灾害防治研究所,北京100120

出  处:《北京理工大学学报》2023年第11期1105-1114,共10页Transactions of Beijing Institute of Technology

基  金:国家自然科学基金资助项目(42174026);城市空间信息工程北京市重点实验室经费资助项目(20220102)。

摘  要:传统的GB-InSAR时序处理方法针对整个数据集或分组进行实时处理,该类方法占用大量的电脑内存,效率低,不能满足边坡监测的时效性,无法实现形变预测与灾害预警预报.针对此种情况,提出了基于Kalman滤波的GB-InSAR边坡形变监测实时处理方法.以河北省迁安市马兰庄铁矿边坡监测为例进行分析,提出方法在实验所用解算平台下,在1 min内可解算出研究区当前时刻形变量,并可以预测下一时刻的形变量,与传统时序InSAR的结果相比,时序形变标准差优于1 mm.The traditional GB-InSAR time-series processing methods target the whole data set or group for real-time processing,which occupy a large amount of computer memory and are inefficient and cannot meet the timeliness of slope monitoring and realize deformation prediction and disaster warning forecast.For such a situ-ation,a real-time processing method of GB-InSAR slope deformation monitoring was proposed based on Kal-man filtering.Taking the slope monitoring of Malanzhuang iron mine in Qian'an City,Hebei Province as an ana-lysis example,the proposed method was arranged to do verification test.The results show that the new method can solve the deformation variables within 1 minute for the current moment in the study area and can predict the deformation variables for the next moment on the solution platform used in the experiment.Compared with the results of traditional time-series InSAR,less than 1 mm standard deviation of the temporal deformation can be obtained.

关 键 词:KALMAN滤波 GB-InSAR时序处理 形变监测 实时处理 

分 类 号:TN959.3[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象